Is $x^{20} +x^{15}+ x^{10}+x^5+1$ irreducible in $\mathbb{Q}[x]$?
I think if $y=x^5$, then $P(y)=y^{4} +y^{3}+ y^{2}+y+1 =\displaystyle \frac{y^5-1}{y-1}$, $5$ is prime, then $P(y)$ is irreducible in $\mathbb{Q}[y]$ or $\mathbb{Q}[x^5]$ , how do I show that it is irreducible in $\mathbb{Q}[x]$?