I will try the limit in b) as other parts of the question have been solved quite nicely.
Let us write $L = \lim_{x \to 0}(2 - e^{\arcsin^{2}\sqrt{x}})^{3/x}$
Then we have
$\displaystyle \begin{aligned} \log L &= \log\left\{\lim_{x \to 0}(2 - e^{\arcsin^{2}\sqrt{x}})^{3/x}\right\} \\
&= \lim_{x \to 0}\log\left\{(2 - e^{\arcsin^{2}\sqrt{x}})^{3/x}\right\} \text{ (because of continuity of log) }\\
&= \lim_{x \to 0}\frac{3}{x}\log(2 - e^{\arcsin^{2}\sqrt{x}})\\
&= 3\lim_{x \to 0}\frac{\log(1 + 1 - e^{\arcsin^{2}\sqrt{x}})}{1 - e^{\arcsin^{2}\sqrt{x}}}\cdot\frac{1 - e^{\arcsin^{2}\sqrt{x}}}{x}\\
&= 3\lim_{x \to 0} 1\cdot \frac{1 - e^{\arcsin^{2}\sqrt{x}}}{x}\text{ (see explanation point 1 below) }\\
&= -3 \lim_{x \to 0} \frac{e^{\arcsin^{2}\sqrt{x}} - 1}{x}\\
&= -3\lim_{x \to 0} \frac{e^{\arcsin^{2}\sqrt{x}} - 1}{{\arcsin^{2}\sqrt{x}}}\cdot\frac{{\arcsin^{2}\sqrt{x}}}{x}\\
&= -3\lim_{x \to 0}1\cdot\left(\frac{\arcsin\sqrt{x}}{\sqrt{x}}\right)^{2}\text{ (see explanation point 2 below) }\\
&= -3\cdot 1^{2}\text{ (see explanation point 3 below) }\\
&= -3\end{aligned}$
Hence desired limit $L$ is given by $L = e^{-3}$.
Explanation for some steps: For calculating limits we can use following simple results:
1) $\displaystyle \lim_{y \to 0}\frac{\log(1 + y)}{y} = 1$
In the above problem we have $y = 1 - e^{\arcsin^{2}\sqrt{x}}$ so that $y \to 0$ as $x \to 0$ and hence the logarithmic limit evaluates to $1$.
2) $\displaystyle \lim_{y \to 0}\frac{e^{y} - 1}{y} = 1$
In this problem $y = \arcsin^{2}\sqrt{x}$ so that $y \to 0$ as $x \to 0$ and the exponential limit is also $1$.
3) $\displaystyle \lim_{y \to 0}\frac{\sin y}{y} = 1,\,\,\lim_{y \to 0}\frac{\arcsin y}{y} = 1$
Here $y = \sqrt{x}$ so that the arcsin limit evaluates to $1$.
In most common problems on limits these three fomulas suffice. When they don't (especially in some tough ones) I use L'Hospital Rule and if L'Hospital fails or generates complicated expression then only I opt for series expansions.
Update: The way question has been put the limit does not exist. We should change question so that $x \to 0+$.