How do I compute the summation at the end:
$$E(x) = \sum_{x=1}^\infty x.P(X=x) = \sum_{x=1}^{\infty} x \left(\frac{5}{6}\right)^{x-1}$$
How do I compute the summation at the end:
$$E(x) = \sum_{x=1}^\infty x.P(X=x) = \sum_{x=1}^{\infty} x \left(\frac{5}{6}\right)^{x-1}$$
Recall the geometric series: $$\sum_{x=0}^{\infty} a^x = \dfrac1{1-a}$$ Differentiate the above with respect to $a$ on both sides to get $$\sum_{x=0}^{\infty} xa^{x-1} = \dfrac1{(1-a)^2}$$ Now plug in $a=\dfrac56$ to get what you want.