Let $(X,d)$ be a compact metric space. Let $f:X\rightarrow X$ be such that $d(f(x),f(y))=d(x,y)$ for all $x,y\in X$. Show that f is onto. Hint: Fix $y\in X $and $ x_1\in X$, define $x_n=f(x_{n-1})$, observe that $d(x_n,x_{n+k})=d(y,x_n)$.
It is easy to show that
\begin{align*}
d(x_n,x_{n+k})&=d(f(x_{n-1}),f(x_{n+k-1})) \\
&=d(x_{n-1},x_{n+k-1})\\
&=d(x_{n-k},x_n)
\end{align*}
I don't understand how we get $d(y,x_n)$.Why $y$ must be an element in $x_n$?