Hartshorne, Algebraic Geometry, Proposition II.5.2, reads (in part):
Let $A$ be a ring and let $X = \operatorname{Spec} A$. Also let $A \to B$ be a ring homomorphism and $f : \operatorname{Spec} B \to \operatorname{Spec} A$ be the corresponding map of spectra. Then:
[...]
(d) for any $B$-module $N$ we have $f_\ast(\widetilde{N}) \cong \widetilde{_{A}N}$, where $_A N$ means $N$ considered as an $A$-module;
(e) for any $A$-module $M$ we have $f^\ast(\widetilde{M}) \cong \widetilde{M \otimes_A B}$.
The corresponding proof in the text reads:
The last statements... follow directly from the definitions.
I don't get it. For instance,
$$(f_\ast\widetilde{N})(U) = \left\{s : f^{-1}(U) \to \bigsqcup_{f(\mathfrak{p}) \in U} N_\mathfrak{p} \; \middle\vert \; s(\mathfrak{p}) \in N_\mathfrak{p}, s = \frac{n}{b} \text{ locally}\right\}$$
while
$$\widetilde{_{A}N}(U) = \left\{t : U \to \bigsqcup_{\mathfrak{q} \in U} ({}_AN)_\mathfrak{q} \; \middle\vert \; s(\mathfrak{q}) \in ({}_AN)_\mathfrak{q}, s = \frac{n}{a} \text{ locally}\right\}$$
I can't see the connection. What am I missing?