Wilson's theorem establishes that if a $n$ number is prime then: \begin{align} (n-1)! &\equiv -1\ \textrm{mod}\ (n) \end{align}
I have probed the theorem for the particular case where $n = 7$ like this:
I first consider the set $\{2,..,n-2\}$, in my case, $\{2,3,4,5\}$ and then I take the pair of numbers $a$ and $a¹$ where:
\begin{align} 2.4 &\equiv 1\ \textrm{mod}\ (7) \end{align} \begin{align} 3.5 &\equiv 1\ \textrm{mod}\ (7) \end{align} Then, \begin{align} 2.3.4.5 &\equiv 1\ \textrm{mod}\ (7) \end{align} So, \begin{align} 6 &\equiv -1\ \textrm{mod}\ (7) \end{align} And finally, \begin{align} 6! &\equiv -1\ \textrm{mod}\ (7) \end{align}
How can I prove the theorem where $n=11$? How can I retrieve $a$ and $a¹$?