$\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert #1 \right\vert}%
\newcommand{\yy}{\Longleftrightarrow}$
You can use
$$
\int{\rm f}\pars{\vec{r}}\delta\pars{{\rm g}\pars{\vec{r}}}\,\dd^{n}\vec{r}
=
\int{\rm f}\pars{\vec{r}}
\bracks{%
\int_{-\infty}^{\infty}\expo{\ic k{\rm g}\pars{\vec{r}}}
\,{\dd k \over 2\pi}}\dd^{n}\vec{r}
=
\int_{-\infty}^{\infty}{\dd k \over 2\pi}\bracks{%
\int{\rm f}\pars{\vec{r}}\expo{\ic k{\rm g}\pars{\vec{r}}}\,\dd^{n}\vec{r}}
$$
ADDENDUM:
In some particular cases ( it depends on the particular form of ${\rm g}$ ), the Dirac delta $\delta\pars{{\rm g}\pars{\vec{r}}}$ can be reduced to a product of "more simple" Dirac delta's. For example, with $n = 3$ and spherical coordinates it's like
$$
\delta\pars{\vec{r}}
=
{1 \over r^{2}}\delta\pars{r}\delta\pars{\cos\pars{\theta}}\delta\pars{\phi}
$$