http://en.wikipedia.org/wiki/Continued_fraction#Finite_continued_fractions
The cross product of consecutive convergents in simple continued fractions are either $\pm 1.$ The first in the string is always $\frac{0}{1}.$ The second in the string is always the nonsensical $\frac{1}{0}.$ The convergents for $\frac{4999}{1109}$ are
$$ \frac{0}{1}, \; \frac{1}{0}, \; \frac{4}{1}, \; \frac{5}{1}, \; \frac{9}{2}, \; \frac{293}{65}, \; \frac{2353}{522}, \; \frac{4999}{1109}.$$
We get little 2 by 2 determinant $$ 2353 \cdot 1109 - 522 \cdot 4999 = -1. $$
So $$ -2353 \cdot 1109 + 522 \cdot 4999 = 1. $$
This is not a difficult method to learn and has other uses. Note that the letters $a_i,$ called quotients on wikipedia, are $$ \langle 4; 1,1,32,8,2 \rangle. $$
These are $ \langle a_0; a_1,a_2,a_3,a_4,a_5 \rangle. $ I did it with a calculator. Beginning with the number $x_0 = \frac{4999}{1109} \approx 4.5077664563,$ we begin with $$ a_0 = \lfloor x_0 \rfloor = 4.$$ The fractional part is $x_0 - \lfloor x_0 \rfloor \approx 0.5077664563,$ and we take the reciprocal to get
$$ x_1 = \frac{1}{x_0 - \lfloor x_0 \rfloor} \approx \frac{1}{0.5077664563} \approx 1.969804617 $$
Then $$ a_1 = \lfloor x_1 \rfloor = 1.$$ The fractional part is $x_1 - \lfloor x_1 \rfloor \approx 0.969804617,$ and we take the reciprocal to get
$$ x_2 = \frac{1}{x_1 - \lfloor x_1 \rfloor} \approx \frac{1}{0.969804617} \approx 1.031135532. $$
Then $$ a_2 = \lfloor x_2 \rfloor = 1.$$ The fractional part is $x_2 - \lfloor x_2 \rfloor \approx 0.031135532,$ and we take the reciprocal to get
$$ x_3 = \frac{1}{x_2 - \lfloor x_2 \rfloor} \approx \frac{1}{0.031135532} \approx 32.11764617. $$
Then $$ a_3 = \lfloor x_3 \rfloor = 32.$$ The fractional part is $x_3 - \lfloor x_3 \rfloor \approx 0.11764617,$ and we take the reciprocal to get
$$ x_4 = \frac{1}{x_3 - \lfloor x_3 \rfloor} \approx \frac{1}{0.11764617} \approx 8.500064218. $$
Then $$ a_4 = \lfloor x_4 \rfloor = 8.$$ The fractional part is $x_4 - \lfloor x_4 \rfloor \approx 0.500064218,$ and we take the reciprocal to get
$$ x_5 = \frac{1}{x_4 - \lfloor x_4 \rfloor} \approx \frac{1}{0.500064218} \approx 1.999743161. $$ it is here that experience becomes critically important. We are seeing the effect of tiny calculator roundoffs. The actual value is $x_5 = 2,$ from which we get $a_5 = 2,$ and that concludes the s.c.f.
Let us put in the "quotients" where they belong in the calculation:
$$ \frac{0}{1}, \; \frac{1}{0}, \; \color{magenta}{\frac{4}{}}, \; \frac{4}{1}, \; \color{magenta}{\frac{1}{}}, \; \frac{5}{1}, \; \color{magenta}{\frac{1}{}}, \; \frac{9}{2}, \; \color{magenta}{\frac{32}{}}, \; \frac{293}{65}, \; \color{magenta}{\frac{8}{}}, \; \frac{2353}{522}, \; \color{magenta}{\frac{2}{}}, \;\frac{4999}{1109}.$$
In every case, given two consecutive numerators (in black) followed by a quotient (in magenta), the first numerator plus the second numerator times the quotient is the following numerator. So, $$ 0 + 1 \cdot 4 = 4, \; 1 + 4 \cdot 1 = 5, \; 4 + 5 \cdot 1 = 9, \; 5 + 9 \cdot 32 = 293, \; 9 + 293 \cdot 8 = 2353, \; 293 + 2353 \cdot 2 = 4999. $$
Same for denominators, $$ 1 + 0 \cdot 4 = 1, \; 0 + 1 \cdot 1 = 1, \; 1 + 1 \cdot 1 = 2, \; 1 + 2 \cdot 32 = 65, \; 2 + 65 \cdot 8 = 522, \; 65 + 522 \cdot 2 = 1109. $$
In case you are worried by this: the exact version, with fractions instead of calculator decimal approximations, is exactly what you have been doing:
$$ x_0 = \frac{4999}{1109} = 4 + \frac{563}{1109}, $$
$$ x_1 = \frac{1109}{563} = 1 + \frac{546}{563}, $$
$$ x_2 = \frac{563}{546} = 1 + \frac{17}{546}, $$
$$ x_3 = \frac{546}{17} = 32 + \frac{2}{17}, $$
$$ x_4 = \frac{17}{2} = 8 + \frac{1}{2}, $$
$$ x_5 = \frac{2}{1} = 2. $$