Let $n>1$ be an integer and let $\operatorname{rad}(n!)$ denote the radical of $n$-factorial. (The radical of an integer $m$ being, loosely speaking, the product of the prime divisors of $m$.)
Can one give an upper bound for $\log \operatorname{rad}(n!)$ better than $n\log n$?
Proof: $$ \log \operatorname{rad}(n!) \leq \log (n!) \leq \log (n^n) \leq n \log n. $$