I would like to understand the relationship betwene $e^{i\cdot \theta}$ and hyperbolic sine and cosine. Here is what I have done so far:
Given: $$\sinh(x)+\cosh(x)=e^x $$ $$i\sin(\theta)+\cos(\theta)=e^{i\theta} $$
Replaced $x$ in the first equation with $i\theta$ :
$$\sinh(i\theta)+\cosh({i\theta})=e^{i\theta} $$
Given: $$i\sinh(x)= \sin(ix)$$ $$\cosh(x)=\cos(ix) $$ Replaced $x$ with $i\theta$ $$i\sinh({i\theta})= \sin(i\cdot{i\theta})=\sin(-\theta)$$ $$\cosh({i\theta})=\cos(i\cdot {i\theta})=\cos(-\theta) $$
$$\sinh(x)= \frac{\sin(ix)}{i}$$
I feel like I'm doing meaningless symbolic manipulation that likely is flawed on some level.