1

I would like to understand the relationship betwene $e^{i\cdot \theta}$ and hyperbolic sine and cosine. Here is what I have done so far:

Given: $$\sinh(x)+\cosh(x)=e^x $$ $$i\sin(\theta)+\cos(\theta)=e^{i\theta} $$

Replaced $x$ in the first equation with $i\theta$ :

$$\sinh(i\theta)+\cosh({i\theta})=e^{i\theta} $$

Given: $$i\sinh(x)= \sin(ix)$$ $$\cosh(x)=\cos(ix) $$ Replaced $x$ with $i\theta$ $$i\sinh({i\theta})= \sin(i\cdot{i\theta})=\sin(-\theta)$$ $$\cosh({i\theta})=\cos(i\cdot {i\theta})=\cos(-\theta) $$

$$\sinh(x)= \frac{\sin(ix)}{i}$$

I feel like I'm doing meaningless symbolic manipulation that likely is flawed on some level.

Incnis Mrsi
  • 1,460
User3910
  • 2,390

1 Answers1

2

You could have obtained these identites a little easier using the definitions $$\begin{align*} \sin(x) & = \frac 1 {2i} (e^{ix} - e^{-ix}) \\ \cos(x) & = \frac 1 2 (e^{ix} + e^{-ix}) \\ \sinh(x) & = \frac 1 2 (e^x - e^{-x}) \\ \cosh(x) & = \frac 1 2 (e^x + e^{-x}) \end{align*}$$

As @DanielFischer said, these make much more sense when considered as whole functions on $\mathbb C$.

AlexR
  • 24,905