Let $A:E \rightarrow F$ be a linear mapping and E,F two finite-dimension inner vector spaces. I want to prove that 1) $N(A^*)=Im(A)^\bot$ 2) $Im(A^*)=N(A)^\bot$ 3) $N(A)=Im(A^*)^\bot$ 4) $Im(A)=N(A^*)^\bot$
Where $A^*$ is the adjoint of $A$ and $\bot$ denotes the orthogonal complement, i.e., $Im(A)^\bot$, for example, is the set whose elements are orthogonal to all vectors of $Im(A)$. I managed to prove (1) this way:
1) $v\in N(A^*) \Rightarrow A^*v=0 \Rightarrow <u,A^*v>=0, \forall u\in E \Rightarrow <Au,v>=0, \forall u\in E \Rightarrow v \in Im(A)^\bot$.
I want some help to prove (2),(3),(4). Thank you.