I'm fairly confident I got the right idea, but I'm not quite sure how to state the answer...
\begin{align} \lim_{n\to\infty}\frac{1+a+a^2+\dots+a^n}{1+b+b^2+\dots+b^n}&=\frac{\lim_{n\to\infty}1+a+a^2+\dots+a^n}{\lim_{n\to\infty}1+b+b^2+\dots+b^n}\\ &=\frac{\lim_{n\to\infty}\frac{1-a^{n+1}}{1-a}}{\lim_{n\to\infty}\frac{1-b^{n+1}}{1-b}}\\ &=\frac{\lim_{n\to\infty}(1-a^{n+1})(1-b)}{\lim_{n\to\infty}(1-a)(1-b^{n+1})}\\ &=\begin{cases}\frac{1-b}{1-a}&&\text{if } |a|,|b|<1\\\infty&&\text{if }|a|>1,|b|<1\\0&&\text{if }|a|<1,|b|>1\\ DNE&&\text{otherwise}\end{cases} \end{align} I'm not confident on the DNE part, and I don't know if there are other cases I'm missing. Also, fwiw, this is for a real analysis class, where the assignment says "You need to show your calculation, but no need to use '$\epsilon-N$' language to prove."