Based on the definition of $e: = \lim_{x\to\infty} \left(1+\frac1x \right)^x$, how can we show that
$$\lim_{x\to \infty}\left( 1-\frac{\lambda}{x} \right)^x = e^{-\lambda}?$$
So far I've tried changing variables, $\eta = \frac{-x}{\lambda}$, so $=\lim_{\eta \to -\infty}\left( \left( 1 + \frac1\eta \right)^\eta \right)^{-\lambda}$. But then we would need to show $\lim_{\eta \to -\infty}\left( 1 + \frac1\eta \right)^\eta =e$.