Using Riemann integrals of suitably functions, find the following limit
$$\lim_{n\to \infty}\sum_{k=1}^n \frac{k}{n^2+k^2}$$
Please help me check my method:
Let $$f(x)=\frac{x}{1+x^2}$$ For each n$\in$ $\Bbb N$, let partition $$P_n=({\frac{k}{n}:0\le k\le n})$$ and $$\xi^{(n)}=(\frac{1}{n},\frac{2}{n},...,\frac{n-1}{2n},1)$$ and $||P_n||=\frac{1}{n} \rightarrow 0$
$$\lim_{n\to \infty}\sum_{k=1}^n \frac{k}{n^2+k^2}=\int_0^1 \frac{x}{1+x^2}dx=\frac{1}{2} \ln(1+x^2)|^1_0=\frac{\ln 2}{2}$$
Is there any other methods for this question?