Really late here, but please allow me to present a generalization:
\begin{align*}
&\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{\ln ^2\left( x \right)}{\pi ^2\theta ^2} \right) \mathrm{d}x}
\\
&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\left( \frac{\left(\theta -1 \right)^2}{2}-\frac{1}{6} \right)\pi ^2 \ln \left( \frac{\theta}{2} \right) -4\pi ^2\zeta '\left( -1,\frac{\theta}{2} \right) +\left(\frac{1}{3}-\frac{\theta ^2}{4}\right)\pi ^2
\end{align*}
Derivation of this formula requires a few identities and lemmas:
Identity 0
$$
\int_0^1{\frac{\ln \left( 1-x \right)}{x}}\mathrm{d}x=-\frac{\pi ^2}{6}
$$
Identity 1
$$
\coth \left( z \right) =\frac{1}{z}+\sum_{k=1}^{\infty}{\frac{2z}{z^2+n^2\pi ^2}}
$$
Identity 2
$$
\int_0^{\infty}{\left( \frac{e^{-at}}{t}-\frac{be^{-ct}}{1-e^{-bt}} \right) \mathrm{d}t}=\psi \left( \frac{c}{b} \right) -\ln \left( \frac{a}{b} \right)
$$
Identity 3
$$
\zeta '\left( -1,z \right) =\frac{1}{12}-\frac{z^2}{4}+\left( \frac{1}{12}-\frac{1}{2}z+\frac{1}{2}z^2 \right) \ln \left( z \right) +\mathcal{O} \left( \frac{1}{z^2} \right)
$$
Identity 4
$$
\int_0^z{\ln \left( \Gamma \left( x \right) \right)}\mathrm{d}x=\frac{z}{2}\ln \left( 2\pi \right) +\frac{z\left( 1-z \right)}{2}-\zeta '\left( -1 \right) +\zeta '\left( -1,z \right)
$$
Lemma 1
\begin{align*}
&\int_1^t{\left( 2\ln \left( \Gamma \left( x \right) \right) -2x\ln \left( x \right) +2x+\ln \left( x \right) -\ln \left( 2\pi \right) -\frac{1}{6x} \right)}\mathrm{d}x
\\
&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=-2\zeta '\left( -1 \right) +2\zeta '\left( -1,t \right) +\frac{1}{2}t^2-\left( t^2-t+\frac{1}{6} \right) \ln \left( t \right) -\frac{1}{2}
\end{align*}
This is basically done by using identity 4 and sheer calculation. Moreover, using identity 3, we have
$$
\int_1^{\infty}{\left( 2\ln \left( \Gamma \left( x \right) \right) -2x\ln \left( x \right) +2x+\ln \left( x \right) -\ln \left( 2\pi \right) -\frac{1}{6x} \right) \mathrm{d}x}=-2\zeta '\left( -1 \right) -\frac{1}{3}
$$
Lemma 2
$$
\int_0^1{\frac{-\theta \ln \left( 1-x \right)}{x\left[ \theta ^2+r^2\ln ^2\left( x \right) \right]}\mathrm{d}x}=\frac{\pi}{r}\left[ \ln \left( \Gamma \left( \frac{\theta}{2\pi r} \right) \right) -\frac{\theta}{2\pi r}\ln \left( \frac{\theta}{2\pi r} \right) +\frac{\theta}{2\pi r}+\frac{1}{2}\ln \left( \frac{\theta}{4\pi ^2r} \right) \right]
$$
I shall prove this one:
\begin{align*}
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\frac{-\theta}{\theta ^2+r^2\ln ^2\left( x \right)}\mathrm{d}x}=&\int_0^1{\left( \sum_{n=1}^{\infty}{\frac{x^{n-1}}{n}} \right) \left( \int_0^{\infty}{\cos \left( r\ln \left( x \right) t \right) e^{-\theta t}\mathrm{d}t} \right) \mathrm{d}x}
\\
=&\int_0^1{e^{-\theta t}\sum_{n=1}^{\infty}{\frac{1}{n}\int_0^1{\cos \left( r\ln \left( x \right) t \right) x^{n-1}\mathrm{d}x}}\mathrm{d}t}
\\
=&\int_0^{\infty}{e^{-\theta t}\sum_{n=1}^{\infty}{\frac{1}{n}\Re \left\{ \int_0^{\infty}{x^{irt+n-1}\mathrm{d}x} \right\}}\mathrm{d}t}
\\
=&\int_0^{\infty}{e^{-\theta t}\sum_{n=1}^{\infty}{\frac{1}{r^2t^2+n^2}}\mathrm{d}t}
\\
=&\int_0^{\infty}{\frac{e^{-\theta t}}{2rt}\left( \pi \coth \left( \pi rt \right) -\frac{1}{rt} \right) \mathrm{d}t}
\\
=&\frac{1}{4r^2}\int_0^{\infty}{\frac{e^{-\theta t}}{t}\left( 2\pi r\frac{1+e^{-2\pi rt}}{1-e^{-2\pi rt}}-\frac{2}{t} \right) \mathrm{d}t}
\\
=&\frac{1}{4r^2}\int_{\infty}^{\theta}{\left( \frac{\mathrm{d}}{\mathrm{d}a}\int_0^{\infty}{\frac{e^{-at}}{t}\left( 2\pi r\frac{1+e^{-2\pi rt}}{1-e^{-2\pi rt}}-\frac{2}{t} \right) \mathrm{d}t} \right) \mathrm{d}a}
\\
=&\frac{1}{4r^2}\int_{\infty}^{\theta}{\int_0^{\infty}{e^{-a}\left( \frac{2}{t}-2\pi r\frac{1+e^{-2\pi rt}}{1-e^{-2\pi rt}} \right) \mathrm{d}t}\mathrm{d}a}
\\
=&\frac{1}{4r^2}\int_{\infty}^{\theta}{\left( \int_0^{\infty}{\left( \frac{e^{-at}}{t}-\frac{2\pi re^{-at}}{1-e^{-2\pi rt}} \right) \mathrm{d}t}+\int_0^{\infty}{\left( \frac{e^{-at}}{t}-\frac{2\pi re^{-\left( 2\pi r+a \right) t}}{1-e^{-2\pi rt}} \right) \mathrm{d}t} \right) \mathrm{d}a}
\\
=&\frac{1}{4r^2}\int_{\infty}^{\theta}{\left( 2\psi \left( \frac{a}{2\pi r} \right) -2\ln \left( \frac{a}{2\pi r} \right) +\frac{2\pi r}{a} \right) \mathrm{d}a}
\\
=&\frac{\pi}{r}\left[ \ln \left( \Gamma \left( x \right) \right) -x\ln \left( x \right) +x+\frac{1}{2}\ln \left( x \right) \right] _{R\rightarrow \infty}^{\frac{\theta}{2\pi r}}
\\
=&\frac{\pi}{r}\left[ \ln \left( \Gamma \left( \frac{\theta}{2\pi r} \right) \right) -\frac{\theta}{2\pi r}\ln \left( \frac{\theta}{2\pi r} \right) +\frac{\theta}{2\pi r}+\frac{1}{2}\ln \left( \frac{\theta}{4\pi ^2r} \right) \right]
\end{align*}
Prove of the generalization
\begin{align*}
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{\ln ^2\left( x \right)}{\theta ^2\pi ^2} \right) \mathrm{d}x}=&\int_0^1{\frac{\ln \left( 1-x \right)}{x}\int_0^1{\frac{2t\ln ^2\left( x \right)}{\theta ^2\pi ^2+t^2\ln ^2\left( x \right)}\mathrm{d}t}\mathrm{d}x}
\\
=&2\int_0^1{\int_0^1{\frac{\ln \left( 1-x \right)}{xt}\left( \frac{t^2\ln ^2\left( x \right)}{\theta ^2\pi ^2+t^2\ln ^2\left( x \right)} \right)}\mathrm{d}x\mathrm{d}t}
\\
=&2\int_0^1{\frac{1}{t}\int_0^1{\frac{\ln \left( 1-x \right)}{x}\left( 1-\frac{\theta ^2\pi ^2}{\theta ^2\pi ^2+t^2\ln ^2\left( x \right)} \right)}\mathrm{d}x\mathrm{d}t}
\\
=&2\int_0^1{\frac{1}{t}\left( \int_0^1{\frac{\ln \left( 1-x \right)}{x}}\mathrm{d}x+\theta \pi \int_0^1{\frac{\ln \left( 1-x \right)}{x}\frac{-\theta \pi}{\theta ^2\pi ^2+t^2\ln ^2\left( x \right)}\mathrm{d}x} \right) \mathrm{d}t}
\\
=&2\pi ^2\int_0^1{\frac{1}{t}\left( \frac{\theta}{t}\left[ \ln \left( \Gamma \left( \frac{\theta}{2t} \right) \right) -\frac{\theta}{2t}\ln \left( \frac{\theta}{2t} \right) +\frac{\theta}{2t}+\frac{1}{2}\ln \left( \frac{\theta}{4\pi t} \right) \right] -\frac{1}{6} \right) \mathrm{d}t}
\\
=&2\pi ^2\int_{\frac{\theta}{2}}^{\infty}{\left( 2\ln \left( \Gamma \left( t \right) \right) -2t\ln \left( t \right) +2t+\ln \left( t \right) -\ln \left( 2\pi \right) -\frac{1}{6t} \right) \mathrm{d}t}
\\
=&2\pi ^2\left( \int_1^{\infty}{-\int_1^{\frac{\theta}{2}}{\,\,}} \right) \left( 2\ln \left( \Gamma \left( t \right) \right) -2t\ln \left( t \right) +2t+\ln \left( t \right) -\ln \left( 2\pi \right) -\frac{1}{6t} \right) \mathrm{d}t
\\
=&2\pi ^2\left( -2\zeta '\left( -1 \right) -\frac{1}{3}-\left( -2\zeta '\left( -1 \right) +2\zeta '\left( -1,\frac{\theta}{2} \right) +\frac{1}{2}\left( \frac{\theta}{2} \right) ^2-\left( \left( \frac{\theta}{2} \right) ^2-\frac{\theta}{2}+\frac{1}{6} \right) \ln \left( \frac{\theta}{2} \right) \right) +\frac{1}{2} \right)
\\
=&\frac{\pi ^2}{2}\left( \left( \theta -1 \right) ^2-\frac{1}{3} \right) \ln \left( \frac{\theta}{2} \right) -4\pi ^2\zeta '\left( -1,\frac{\theta}{2} \right) +\frac{\pi ^2}{3}-\frac{\theta ^2\pi ^2}{4}
\end{align*}
Results
The following is the formula evaluated at $\theta=\frac{1}{3}$, $\frac{1}{2}$, $\frac{2}{3}$, $1$, $\frac{4}{3}$, $\frac{3}{2}$, $\frac{5}{3}$, and $2$ respectively.
\begin{align*}
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{9\ln ^2\left( x \right)}{\pi ^2} \right) \mathrm{d}x}=&\frac{1}{36}\pi ^2\ln \left( \frac{1}{432} \right) +\frac{1}{4}\pi ^2+\frac{1}{3\sqrt{3}}\pi ^3+\frac{2}{3}\pi ^2\ln \left( \mathbf{A} \right) -\frac{\pi}{2\sqrt{3}}\psi ^{\left( 1 \right)}\left( \frac{1}{3} \right)
\\
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{4\ln ^2\left( x \right)}{\pi ^2} \right) \mathrm{d}x}=&\frac{1}{12}\pi ^2\ln \left( 2 \right) +\frac{5}{16}\pi ^2-\pi \mathbf{G}-\frac{1}{2}\pi ^2\ln \left( \mathbf{A} \right)
\\
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{9\ln ^2\left( x \right)}{4\pi ^2} \right) \mathrm{d}x}=&\frac{1}{18}\pi ^2\ln \left( 27 \right) +\frac{1}{3}\pi ^2+\frac{2}{9\sqrt{3}}\pi ^3-\frac{4}{3}\pi ^2\ln \left( \mathbf{A} \right) -\frac{\pi}{3\sqrt{3}}\psi ^{\left( 1 \right)}\left( \frac{1}{3} \right)
\\
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{\ln ^2\left( x \right)}{\pi ^2} \right) \mathrm{d}x}\,\,\,\,=&\frac{1}{3}\pi ^2\ln \left( 2 \right) +\frac{1}{4}\pi ^2-2\pi ^2\ln \left( \mathbf{A} \right)
\\
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{9\ln ^2\left( x \right)}{16\pi ^2} \right) \mathrm{d}x}=&\frac{1}{18}\pi ^2\ln \left( \frac{27}{4} \right) -\frac{2}{9\sqrt{3}}\pi ^3-\frac{4}{3}\pi ^2\ln \left( \mathbf{A} \right) +\frac{\pi}{3\sqrt{3}}\psi ^{\left( 1 \right)}\left( \frac{1}{3} \right)
\\
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{4\ln ^2\left( x \right)}{9\pi ^2} \right) \mathrm{d}x}=&\frac{1}{24}\pi ^2\ln \left( \frac{4}{3} \right) -\frac{3}{16}\pi ^2+\pi \mathbf{G}-\frac{1}{2}\pi ^2\ln \left( \mathbf{A} \right)
\\
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{9\ln ^2\left( x \right)}{25\pi ^2} \right) \mathrm{d}x}=&\frac{1}{36}\pi ^2\ln \left( \frac{25}{432} \right) -\frac{5}{12}\pi ^2-\frac{1}{3\sqrt{3}}\pi ^3+\frac{2}{3}\pi ^2\ln \left( \mathbf{A} \right) +\frac{\pi}{2\sqrt{3}}\psi ^{\left( 1 \right)}\left( \frac{1}{3} \right)
\\
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{\ln ^2\left( x \right)}{4\pi ^2} \right) \mathrm{d}x}\,\,\,\,=&4\pi ^2\ln \left( \mathbf{A} \right) -\pi ^2
\end{align*}
It seems like the integral have this conjugacy behavior (sort of) when thaking the value of $\theta$ and $2-\theta$, and if we add them together, we have
\begin{align*}
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{9\ln ^2\left( x \right)}{\pi ^2} \right) \mathrm{d}x}+\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{9\ln ^2\left( x \right)}{25\pi ^2} \right) \mathrm{d}x}=&\frac{1}{18}\pi ^2\ln \left( \frac{5}{432} \right) -\frac{1}{6}\pi ^2+\frac{4}{3}\pi ^2\ln \left( \mathbf{A} \right)
\\
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{4\ln ^2\left( x \right)}{\pi ^2} \right) \mathrm{d}x}+\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{4\ln ^2\left( x \right)}{9\pi ^2} \right) \mathrm{d}x}=&\frac{1}{24}\pi ^2\ln \left( \frac{16}{3} \right) +\frac{1}{8}\pi ^2-\pi ^2\ln \left( \mathbf{A} \right)
\\
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{9\ln ^2\left( x \right)}{4\pi ^2} \right) \mathrm{d}x}+\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{9\ln ^2\left( x \right)}{16\pi ^2} \right) \mathrm{d}x}=&\frac{1}{9}\pi ^2\ln \left( \frac{27}{2} \right) +\frac{1}{3}\pi ^2-\frac{8}{3}\pi ^2\ln \left( \mathbf{A} \right)
\\
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{\ln ^2\left( x \right)}{\pi ^2} \right) \mathrm{d}x}\,\,\,\,+\,\,\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\frac{\ln ^2\left( x \right)}{4\pi ^2} \right) \mathrm{d}x}\,\,=&\frac{1}{3}\pi ^2\ln \left( 2 \right) -\frac{3}{4}\pi ^2+2\pi ^2\ln \left( \mathbf{A} \right)
\end{align*}
Could it be for $2\pi \mid \theta _1+\theta _2$
$$
\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\left( \frac{\ln \left( x \right)}{\theta _1} \right) ^2 \right) \mathrm{d}x}+\int_0^1{\frac{\ln \left( 1-x \right)}{x}\ln \left( 1+\left( \frac{\ln \left( x \right)}{\theta _2} \right) ^2 \right) \mathrm{d}x}\\
\in \mathbb{Q} \pi ^2\ln \left( \mathbb{Q} \right) +\mathbb{Q} \pi ^2+\mathbb{Q} \pi ^2\ln \left( \mathbf{A} \right)
$$
Just some thoughts, though.