Possible Duplicate:
$f(z_1 z_2) = f(z_1) f(z_2)$ for $z_1,z_2\in \mathbb{C}$ then $f(z) = z^k$ for some $k$
How can we characterize the analytic functions defined in the open unit disc $D\subset\mathbb{C}$ that satisfy $f(ab)=f(a)f(b)\text{ }$ for all $a,b\in D$.
What happens if we consider larger domains?