The congruence
$$a^{\varphi(n)+1} \equiv a \pmod{n},$$
or, for that matter,
$$a^{\lambda(n)+1} \equiv a \pmod{n},$$
holds if and only if for all primes $p$ dividing $n$ we have $p \nmid a$ or $v_p(a) \geqslant v_p(n)$ (where $v_p(k)$ is the multiplicity of $p$ in the prime factorisation of $k$, so $p^{v_p(k)} \mid k$, but $p^{v_p(k)+1} \nmid k$).
To see that, consider a prime $p$ dividing $n$, and let $k = v_p(n)$. Then $\varphi(p^k) = (p-1)p^{k-1}$ divides $\lambda(n)$ and a fortiori $\varphi(n)$. Now let $a$ arbitrary. If $p \nmid a$, then $a^{\lambda(n)} \equiv a^{\varphi(n)} \equiv 1 \pmod{p^k}$, and $a^{\lambda(n)+1} \equiv a^{\varphi(n)+1} \equiv a \pmod{p^k}$. And if $p\mid a$, then
$$v_p(a^{\lambda(n)}) \stackrel{\varphi(p^k)\mid\lambda(n)}\geqslant v_p(a^{\varphi(p^k)}) \stackrel{p\mid a}\geqslant \varphi(p^k) = p^{k-1}(p-1) \geqslant p^{k-1} \geqslant k,$$
so $a^{\lambda(n)} \equiv 0 \pmod{p^k}$, and a fortiori $a^{\lambda(n)+1} \equiv 0 \pmod{p^k}$ and $a^{\varphi(n)+1}\equiv 0 \pmod{p^k}$. So if $p \mid a$, we have $a^{\lambda(n)+1} \equiv a \pmod{p^k} \iff a \equiv 0 \pmod{p^k}$ (and ditto for $\varphi(n)$).
Since $a^e \equiv a \pmod{n}$ if and only if $a^e \equiv a \pmod{p^{v_p(n)}}$ for all primes dividing $n$ (that last condition is not necessary, if $p \nmid n$, we have $a^e \equiv a \pmod{p^0}$ regardless), the result follows.