I have to compute the fundamental group of $\mathbb{R}^{3} \smallsetminus A$ where $A=\{(x,y,z): y=0,x^{2}+z^{2}=1\} \cup \{(x,y,z): y=z=0, x \ge 1\}$. In order to do this, I consider $B=\{(x,y,z): x^{2}+y^{2}+z^{2} > 1\}$: if $B$ and $A \cap B$ are simply connected, then the isomorphism $\beta_{*}: \pi(A \cap B,x_0) \mapsto \pi(B,x_0)$ induces an isomorphism $\pi(A,x_0) \mapsto \pi(A \cup B,x_0)$. So I can complete observing that $A \cup B$ is the complement of a circumference in the space $R^{3}$, then $\pi(A)=\pi(A \cup B) \equiv \mathbb{Z}$.
Can you help me, please?