Let $\omega:=\zeta_7+\overline{\zeta_7}$, where $\zeta_7$ is a primitive $7$th root of $1$. I want to find the minimal polynomial of $\omega$ over $\mathbb{Q}$. I've found $$\omega=\zeta_7+\overline{\zeta_7}\quad;\quad\omega^2=\zeta_7^2+\overline{\zeta_7}+2\quad;\quad\omega^3=\zeta_7^3+\overline{\zeta_7}^3+3\omega$$
Now how can I find the minimal polynomial?