Let: $$f(x) = \sin x + \frac{\sin3x}3 + \frac{\sin5x}5 + \frac{\sin7x}7$$ Prove that: $$f' \left(\frac{\pi}{9}\right) = \frac{1}{2}$$
Could somebody point me in the right direction with this one?
Let: $$f(x) = \sin x + \frac{\sin3x}3 + \frac{\sin5x}5 + \frac{\sin7x}7$$ Prove that: $$f' \left(\frac{\pi}{9}\right) = \frac{1}{2}$$
Could somebody point me in the right direction with this one?
$$f'(x)=\cos x+\cos3x+\cos5x+\cos7x$$
Observe that the angles of cosine ratios are in arithmetic progression
So, using this, we multiply either sides by $\displaystyle2\sin\frac{(3x-x)}2=2\sin x,$
$$2\sin xf'(x)=2\sin x(\cos x+\cos3x+\cos5x+\cos7x)$$
Using $2\sin A\cos B=\sin(A+B)+\sin(A-B)$ $$2\sin xf'(x)=\sin2x+\sin4x-\sin2x+\sin6x-\sin4x+\sin8x-\sin6x=\sin8x$$
If $9x=\pi, 8x=\pi-x\implies \sin8x=\sin(\pi-x)=\sin x\ne0$
Can you take it from here?