I need some help with this exercise:
let $\Omega$ be an open subset of $\mathbb{R}^n$. We consider:
$K_m=\lbrace{x\in\Omega, d(x,\mathbb{R}^n-\Omega)\geq\frac{1}{m},|x|\leq m}\rbrace$
If $\Phi\in C^{\infty}(\Omega)$, $m\in\mathbb{N}$, we define:
$q_m(\Phi)=sup\lbrace{|D^{\alpha}\Phi(x)|, |\alpha|\leq m, x\in K_m}\rbrace$ (where $\alpha$ is a multiindex)
Let $d(\Phi,\Psi)=\sum_{m=1}^{\infty}\frac{1}{2^m}\frac{q_m(\Phi-\Psi)}{1+q_m(\Phi-\Psi)}$
I have to prove that this defines a metric over $C^{\infty}(\Omega)$
Thanks a lot for any help.