0

~(pV~q) v (~p^~q) is equal to ~p?

I know the answer is yes and I've been using DeMorgans initially then distributive law after. However I keep messing up on the algebra. Help is appreciated so I can catch where I'm going wrong.

amWhy
  • 209,954
k8lyn
  • 65

2 Answers2

1

$$\begin{align} \lnot (p \lor \lnot q) \lor (\lnot p \land \lnot q & \equiv (\lnot p \land q) \lor (\lnot p \land \lnot q) \tag{DeMorgan's} \\ \\ &\equiv \lnot p \land \underbrace{(q\lor \lnot q)}_\text{true}\tag{Distributive Law} \\ \\ &\equiv \lnot p\end{align}$$

amWhy
  • 209,954
0

$$\neg(p\vee\neg q)\vee(\neg p\wedge\neg q)\equiv(\neg p\wedge q)\vee(\neg p\wedge\neg q)\equiv\neg p\wedge(q\vee\neg q)$$

Cameron Buie
  • 102,994