Let's look for the solutions to the recursive equation in the form $f(n)=C\lambda^n$. If we substitute this form into the recursion we obtain $$\lambda^n=\lambda^{n-1}+\lambda^{n-2},\tag{1}$$ which results in the quadratic equation $$1=\frac{1}{\lambda}+\frac{1}{\lambda^2}$$ whose solutions are $$\lambda_{1,2}=\frac{1\pm\sqrt{5}}{2}$$ Verify that if $C_1\lambda_1^n$ and $C_2\lambda_2^n$ are solutions of the recursive equation than their sum is a solution as well: $$f(n)=C_1\lambda_1^n+C_2\lambda_2^n,$$
where $C_1=-C_2=\sqrt{5}$ is obtained from the fact that $f(0)=1$ and $f(1)=1$ (Use eq. (1))
Now we get $$f(n+1)^2=C_1^2\lambda_1^{2n+2}+C_2^2\lambda_2^{2n+2}+2C_1C_2(\lambda_1\lambda_2)^{n+1}\tag{2}$$
$$f(n+1)^2=C_1^2\lambda_1^{2n-2}+C_2^2\lambda_2^{2n-2}+2C_1C_2(\lambda_1\lambda_2)^{n-1}\tag{3}$$
Subtract (2) and (3) keeping in mind that $\lambda_1\lambda_2=-1$ (from the quadratic equation). We arrive to $$f(n+1)^2-f(n-1)^2=C_1^2\lambda_1^{2n}\left(\lambda_1^2-\frac{1}{\lambda_1^2}\right)+C_2^2\lambda_2^{2n}\left(\lambda_2^2-\frac{1}{\lambda_2^2}\right)$$ Using the values for $C_1$,$C_2$,$\lambda_1$,and $\lambda_2$ we observe that $$C_1\lambda_1^{2n}\left(\lambda_1^2-\frac{1}{\lambda_1^2}\right)=C_2\lambda_2^{2n}\left(\lambda_2^2-\frac{1}{\lambda_2^2}\right)=1$$ and therefore $$f(n+1)^2-f(n-1)^2=C_1\lambda_1^{2n}+C_2\lambda_2^{2n}=f(2n).$$