I also found this proof quite difficult to follow, and not very well-written. Here is my paraphrasing, which I break into four claims:
Assume $f$ is measurable. For each subset $A \subset \mathbb{R}^d$, define
$$\widetilde{A} := \{(x,y) \in \mathbb{R}^d \times \mathbb{R}^d: x - y \in A \}. $$
Now fix $a \in \mathbb{R}$ and fix $E:= \{z \in \mathbb{R}^d : f(z) < a \}$. Since $f$ is measurable, the set $E$ is measurable. Now note that $ \widetilde{E} = \{(x,y): x-y \in E \} = \{(x,y): f(x-y) < a \} = \{\widetilde{f} < a \}.$ Thus, to show that $\widetilde{f}$ is measurable, it suffices to show that $\widetilde{E} \subset \mathbb{R}^d \times \mathbb{R}^d$ is measurable.
Claim 1: If $\mathcal{O} \subset \mathbb{R}^d$ is open, then $\widetilde{\mathcal{O}}$ is open.
Proof. Suppose $\mathcal{O}$ is open. Define $g: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ by $g(x,y) := x-y$, and note that $\widetilde{\mathcal{O}} = g^{-1}(\mathcal{O})$. Since $g$ is clearly continuous (because, e.g., it's linear) and $\mathcal{O}$ is open, the pre-image $g^{-1}(\mathcal{O}) = \widetilde{\mathcal{O}}$ is open.
Claim 2: If $G \subset \mathbb{R}^d$ is a $G_{\delta}$ set, then so is $\widetilde{G}$.
Proof. Suppose $G = \bigcap_{j=1}^{\infty} \mathcal{O}_j$, where each $\mathcal{O}_j \subset \mathbb{R}^d$ is open. Let $g$ be as in Claim 1. Observe that
\begin{align*}
\widetilde{G} = g^{-1}(G) = g^{-1} \left( \bigcap_{j=1}^{\infty} \mathcal{O}_j \right) = \bigcap_{j=1}^{\infty} g^{-1}(\mathcal{O}_j) = \bigcap_{j=1}^{\infty} \widetilde{O}_j.
\end{align*}
Each $\widetilde{\mathcal{O}}_j$ is open by Claim 1, so $\widetilde{G}$ is indeed a $G_{\delta}$ set.
Now for each $k \in \mathbb{N}$, define $B_k := \{y \in \mathbb{R}^d: |y| < k \}$ and $C_k := \mathbb{R}^d \times B_k$.
Claim 3: If $\mathcal{O} \subset \mathbb{R}^d$ is open, then $m(\widetilde{\mathcal{O}} \cap C_k) = m(\mathcal{O}) \, m(B_k)$.
Proof. Let $\mathcal{O} \subset \mathbb{R}^d$ be open. Then $\widetilde{\mathcal{O}} \subset \mathbb{R}^d \times \mathbb{R}^d$ is open (by Claim 1) and hence measurable. Then each $C_k = \mathbb{R}^d \times B_k$ is measurable by Proposition 3.6 of the text. Now observe that
$$\chi_{\widetilde{\mathcal{O}} \cap C_k}(x,y) = \chi_{\mathcal{O}}(x-y) \chi_{B_k}(y)$$
for all $(x,y) \in \mathbb{R}^d \times \mathbb{R}^d$. Hence,
\begin{align*}
m(\widetilde{\mathcal{O}} \cap C_k) &= \int_{\mathbb{R}^d \times \mathbb{R}^d} \chi_{\widetilde{\mathcal{O}} \cap C_k} \\[5pt]
&= \int_{\mathbb{R}^d} \left( \int_{\mathbb{R}^d} \chi_{\mathcal{O}}(x-y) \chi_{B_k}(y) \,dx \right) dy && (\text{Tonelli's theorem}) \\[5pt]
&= \int_{\mathbb{R}^d} \chi_{B_k}(y) \left( \int_{\mathbb{R}^d} \chi_{\mathcal{O}}(x-y) \,dx \right) dy \\[5pt]
&= \int_{\mathbb{R}^d} \chi_{B_k}(y) \left( \int_{\mathbb{R}^d} \chi_{\mathcal{O}}(x) \,dx \right) dy && (\text{Translation invariance of } {\textstyle{\int_{\mathbb{R}^d}}} ) \\[5pt]
&= \left( \int_{\mathbb{R}^d} \chi_{\mathcal{O}}(x)\,dx \right) \left( \int_{\mathbb{R}^d} \chi_{B_k}(y) \right) \\[5pt]
&= m(\mathcal{O}) m(B_k).
\end{align*}
Claim 4: If $m(N) = 0$, then $m(\widetilde{N}) = 0$.
Proof. Let $N \subset \mathbb{R}^d$ and suppose $m(N) = 0$. Then there exists a sequence of open sets $(\mathcal{O}_n)_{n=1}^{\infty}$ in $\mathbb{R}^d$ such that $N \subset \mathcal{O}_n$ and $m(\mathcal{O}_n) \to 0$. Then $\widetilde{N} \subset \widetilde{\mathcal{O}}_n$ and so $\widetilde{N} \cap C_k \subset \widetilde{\mathcal{O}}_n \cap C_k$ for all $n$ and $k$. Thus, $m(\widetilde{N} \cap C_k) \leq m(\widetilde{O}_n \cap C_k) = m(\mathcal{O}_n) m(B_k)$ by Claim 3. Therefore,
\begin{align*}
m(\widetilde{N} \cap C_k) &\leq \lim_{n \to \infty} m(\mathcal{O}_n) m(B_k) = 0
\end{align*}
since $\lim\limits_{n \to \infty} m(\mathcal{O}_n) = 0$ and $m(B_k) < \infty$. Hence, $m(\widetilde{N} \cap C_k) = 0$ for all $k$. Then since $\widetilde{N} \cap C_k \nearrow \widetilde{N}$, it follows by the continuity of $m$ from below that
\begin{align*}
m(\widetilde{N}) = \lim_{k \to \infty} m(\widetilde{N} \cap C_k) = \lim_{k \to \infty} 0 = 0.
\end{align*}
Now the result follows easily: Since $E$ is measurable, we have $E = G \setminus N$ where $G$ is a $G_{\delta}$ set and $N$ is a set of measure zero. Observe that $\widetilde{E} = \widetilde{G} \setminus \widetilde{E}$. Then $\widetilde{G}$ is a $G_{\delta}$ set by Claim 2, and $\widetilde{N}$ is a set of measure zero by Claim 4. Hence, $\widetilde{E} = \{ \widetilde{f} < a\}$ is indeed measurable. And since $a \in \mathbb{R}$ was arbitrary, $\widetilde{f}$ is a measurable function. $\qquad \square$