Prove or reject this statement:
If $ a \mid bc $ then $\displaystyle \frac{a}{\gcd(a,b)} \mid c$
Prove or reject this statement:
If $ a \mid bc $ then $\displaystyle \frac{a}{\gcd(a,b)} \mid c$
Hint: If $a\mid bc$ and $(a,b)=1$ then $a\mid c$. Use this to show:
$$ \displaystyle a \mid bc \implies \frac{a}{\gcd(a,b)} \mid \frac{b}{\gcd(a,b)}\times c \implies \frac{a}{\gcd(a,b)}\mid c $$ Because $\gcd\left(\frac{a}{\gcd(a,b)},\frac{b}{\gcd(a,b)}\right)=1$.
HINT:
Let the highest power of prime $p$ that divides $a,b,c$ be $A,B,C$ respectively
As $a|bc, A\le B+C\iff A-B\le C\ \ \ \ (1) $
Now, the highest power$(D)$ of prime $p$ that divides $\displaystyle \frac a{(a,b)}=A-$min$(A,B)$
If $A\ge B,D=A-B\le C$ by $(1)$
Else $D=A-A=0$ which is always $\le C$
$$ a|bc \implies a = \frac{\gcd(a,c) \gcd(a,b)}{\gcd(\gcd(b,c),a)} \ \frac{a}{\gcd(a,b)} = \frac{\gcd(a,c)}{\gcd(\gcd(b,c),a)} \implies \gcd(\gcd(b,c),a)|\gcd(a,c) ; & ; \gcd(a,c)|c$$
– S L Sep 28 '13 at 19:30