Could you please help me to solve this integration problem? $$\int_0^2\frac{1}{2+\sqrt{3\,e^x+3\,e^{-x}-2}}dx$$ Its approximate numeric value is $0.419197813818367...$, but I could not find an exact symbolic expression for it.
Asked
Active
Viewed 270 times
1 Answers
1
$\int_0^2\dfrac{1}{2+\sqrt{3e^x+3e^{-x}-2}}dx$
$=\int_1^{e^2}\dfrac{1}{2+\sqrt{3y+\dfrac{3}{y}-2}}d(\ln y)$
$=\int_1^{e^2}\dfrac{1}{y\left(2+\sqrt{3y+\dfrac{3}{y}-2}\right)}dy$
$=\int_1^{e^2}\dfrac{1}{2y+y\sqrt{3y+\dfrac{3}{y}-2}}dy$
$=\int_1^{e^2}\dfrac{1}{\sqrt{3y^3-2y^2+3y}+2y}dy$
$=\int_1^{e^2}\dfrac{\sqrt{3y^3-2y^2+3y}-2y}{\left(\sqrt{3y^3-2y^2+3y}+2y\right)\left(\sqrt{3y^3-2y^2+3y}-2y\right)}dy$
$=\int_1^{e^2}\dfrac{\sqrt{3y^3-2y^2+3y}-2y}{3y^3-2y^2+3y-4y^2}dy$
$=\int_1^{e^2}\dfrac{\sqrt{3y^3-2y^2+3y}}{3y^3-6y^2+3y}dy-\int_1^{e^2}\dfrac{2y}{3y^3-6y^2+3y}dy$
$=\int_1^{e^2}\dfrac{\sqrt{3y^3-2y^2+3y}}{3y(y-1)^2}dy-\int_1^{e^2}\dfrac{2}{3(y-1)^2}dy$
which can express in terms of Lauricella Functions

Harry Peter
- 7,819
$ \int f(x)dx = \int \frac{dx}{2+\sqrt{6\cosh x-2}}
– daniel Aug 15 '14 at 20:07= I(x) = (1/6) \left[(2 - \sqrt{-2 + 6 \cosh x}~)\cdot \coth \frac{x}{2} - 2~ i~ E_2((i~ x/2),~ 3) - 4~i ~E_1((i~x/2),~ 3)\right]. $ Using Santosh Linkha's idea, and taking care to take the $\lim_{a\to 0} \int_a^2$ gives the answer in the OP. $E_1,E_2$ are elliptic integrals.