Initial response: this should follow from a fairly mild conjecture on prime gaps, that there for a prime $p \geq 127,$ there is always a prime $q$ with $p < q < p + \sqrt p.$ The last known bad one is $113,$ as $\sqrt {113} \approx 10.63,$ the sum is about $123.63,$ but the first prime after $113$ is $127.$ The things that have actually been proved of this type have exponents slightly larger then $1/2,$ plus they typically have the condition "for large enough numbers," meaning we cannot invoke these theorems directly for this problem. Edit, Komputer Kalkulation: for a prime $p \geq 2999,$ there is always a prime $q$ with $p < q < p + \frac{1 }{2} \sqrt p \;;$ kalkulated for all $p \leq 1000000.$ This slightly stronger conjecture (that it is true for all $p \geq 2999$) implies the conjecture in the original question quite directly. Plus, you can see from the Table of first 75 that this stronger conjecture holds for all $ 4 \cdot 10^{18} \geq p \geq 9551,$ and my little computer run just extends the 9551 down to 2999.
The reason this is relevant is the way $\phi$ reduces numbers. While $\phi(p) = p - 1, $ suppose we had a prime $r$ with $r^2$ of comparable size to $p.$ Then $\phi(r^2) = r^2 - r,$ which is closer to $p - \sqrt p.$ If $r^2 - r \geq N,$ we think there is going to be a $N < p < r^2.$ Similarly,for primes $r,s$ and $rs \approx p,$ we find that $\phi(rs)$ is smaller still.
So, this is a pretty reasonable conjecture. There could even be an elementary proof, hard to say.
EXERCISE: if $M \geq 4$ is not prime, does it follow that $\phi(M) \leq M - \sqrt M?$ I'm going to do a little computer run.
Komputer Kalkulation: if $M \geq 4$ is not prime, then $\phi(M) \leq M - \sqrt M,$ and equality holds only if $M = r^2$ for prime $r.$
Should not be difficult to prove the Kalkulation. EDIT: yes, this is meaning of the first displayed equation in the answer by mjqxxxx