3

$$\int_0^1 x^{-x} \mathrm{dx} $$

3 Answers3

1

Hint:

$$\int_0^1{x^{-x}dx} = \int_0^1{e^{\log x^{-x}}dx} = \int_0^1{\sum_{k=1}^{\infty}\frac{(-x)^k\log^k x}{k!}}dx= \sum_{k=0}^\infty \frac{1}{k!}\int_0^1 (-1)^kx^k(\log x)^k\,dx $$ for more detail see here how to integrate $\int\underbrace{x^{x^{\cdot^{\cdot^x}}}}_ndx$

M.H
  • 11,498
  • 3
  • 30
  • 66
0

The value is approximately 1.29129, as shown in this link:

http://www.wolframalpha.com/input/?i=definite+integral+of+x^%28-x%29+from+0+to+1

0

It's equal to 1 + 1/4 + 1/27 + 1/64 + .... +1/n^n ...