$\displaystyle{z \in {\mathbb C}\,,\quad \left\vert z\right\vert < 1}$.
$$
\sum_{n = 3}^{\infty}x_{n}\,z^{n}
=
{1 \over 2}\sum_{n = 3}^{\infty}x_{n - 2}\,z^{n}
+
{1 \over 2}\sum_{n = 3}^{\infty}x_{n - 1}\,z^{n}
$$
\begin{align}
------------&------------------\\
\sum_{n = 1}^{\infty}x_{n}\,z^{n} - x_{1}z - x_{2}z^{2}
&=
{1 \over 2}\,z^{2}\sum_{n = 1}^{\infty}x_{n}\,z^{n}
+
{1 \over 2}\,z\sum_{n = 2}^{\infty}x_{n}\,z^{n}
\\[3mm]&=
{1 \over 2}\,z^{2}\sum_{n = 1}^{\infty}x_{n}\,z^{n}
+
{1 \over 2}\,z\left(\sum_{n = 1}^{\infty}x_{n}\,z^{n} - x_{1}z\right)
\\------------&------------------
\end{align}
$$
\left(1 - {1 \over 2}\,z - {1 \over 2}\,z^{2}\right)
\sum_{n = 1}^{\infty}x_{n}\,z^{n}
=
x_{1}z + x_{2}z^{2} - {1 \over 2}\,x_{1}\,z^{2}
$$
\begin{align}
----&---------------------------\\
\sum_{n = 1}^{\infty}x_{n}\,z^{n}
&=
-\,
{2x_{1}z + \left(2x_{2} - x_{1}\right)z^{2}
\over
z^{2} + z - 2}
=
-\,
{2x_{1}z + \left(2x_{2} - x_{1}\right)z^{2}
\over
\left(z - 1\right)\left(z + 2\right)}
\\[3mm]&=
-\,{1 \over 3}\,z
\left[%
{2x_{1} + \left(2x_{2} - x_{1}\right)z \over z - 1}
-
{2x_{1} + \left(2x_{2} - x_{1}\right)z \over z + 2}\right]
\\[3mm]&=
-\,{1 \over 3}\,z
\left\{%
\left[%
2x_{2} - x_{1}
+
{x_{1} + 2x_{2} \over z - 1}
\right]
-
\left[%
2x_{2} - x_{1}
+
{4x_{1} - 4x_{2} \over z + 2}
\right]
\right\}
\\[3mm]&=
{1 \over 3}\left(x_{1} + 2x_{2}\right)z\,{1 \over 1 - z}
+
{2 \over 3}\left(x_{1} - x_{2}\right)z\,{1 \over 1 + z/2}
\\[3mm]&=
{1 \over 3}\left(x_{1} + 2x_{2}\right)\sum_{n = 1}^{\infty}z^{n}
+
{2 \over 3}\left(x_{1} - x_{2}\right)\sum_{n = 1}^{\infty}
\left(-1\right)^{n - 1}{z^{n} \over 2^{n - 1}}
\\[3mm]&=
\sum_{n = 1}^{\infty}\left[%
{1 \over 3}\left(x_{1} + 2x_{2}\right)
+
{2 \over 3}\left(x_{1} - x_{2}\right)\,{\left(-1\right)^{n - 1} \over 2^{n - 1}}
\right]z^{n}
\\----&---------------------------
\end{align}
$$
x_{n}
=
{1 \over 3}\left(x_{1} + 2x_{2}\right)
+
{2 \over 3}\left(x_{1} - x_{2}\right)\,
{\left(-1\right)^{n - 1} \over 2^{n - 1}}\,,
\qquad\qquad n \geq 1
$$
$$
\begin{array}{|c|}\hline\\
\color{#ff0000}{\large\quad%
\lim_{n \to \infty}x_{n}
\color{#000000}{\ =\ }
{1 \over 3}\,x_{1} + {2 \over 3}\,x_{2}
\quad}
\\ \\ \hline
\end{array}
$$
${\bf 'EASY\ WAY':}$
Look for a solution $x_{n} \propto \mu^{n}$. We get $\mu = 1$ and $\mu = -1/2$.
The general solution is
$x_{n} = A\ 1^{n} + B\left(-1/2\right)^{n} = A + B\left(-1\right)^{n}/2^{n}$.
With $x_{1} = A - B/2$ and $x_{2} = A + B/4$ we get $A = x_{1}/3 + 2x_{2}/3 =
\lim_{n \to \infty}x_{n}$. In addition, $B = 4\left(x1 - x_{2}\right)/3$.