$$\begin{align}\text{Partial answer:}\qquad\qquad\quad\frac1a=\ \frac1b+\frac1c\quad\iff\quad&a=\frac1{\frac1b+\frac1c}=\frac{bc}{b+c}\qquad\qquad(1)\\\\\\\\\\\frac2a=\frac1{c-b}-\frac1{c+b}\quad\iff\quad\frac2a=\frac{2b}{c^2-b^2}\quad\iff\quad&a=\frac{c^2-b^2}b\ \qquad\qquad\qquad\quad\ (2)\end{align}$$
$$\begin{align}&\overset{(1)}{\underset{(2)}\iff}\quad\frac{bc}{b+c}=\frac{c^2-b^2}b\quad&\iff&\quad b^2c=(c-b)(b+c)^2\ \qquad\ |:(b^2c)\\\\\\\\&\iff\quad1=\frac{c-b}c\left(\frac{b+c}b\right)^2\quad&\iff&\quad1=\left(1-\frac1t\right)(1+t)^2\qquad|\cdot t\end{align}$$
$$\iff\quad t=(t-1)(t+1)^2\quad\iff\quad t^3+t^2-2t-1=0\quad\iff\quad t=\frac cb=\ldots$$
We are dealing with a so-called irreducible case , with a single positive real root. Furthermore, from the Generalized Pythagorean Theorem, also known as the Law of Cosines, we deduce the following three relationships, and their implications:
$$a^2+b^2-2ab\cos C=c^2\iff\cos C=\frac{a^2+b^2-c^2}{2ab}\underset{(2)}=\frac{a^2-ab}{2ab}=\frac12\left(\frac ab-1\right)\underset{(2)}=\frac{t^2-1}2$$
$$a^2+c^2-2ac\cos B=b^2\iff\cos B=\frac{a^2+c^2-b^2}{2ac}\underset{(2)}=\frac{a^2+ab}{2ac}=\frac{a+b}{2c}\ \underset{(2)}=\ \frac c{2b}=\frac t2$$
$$b^2+c^2-2bc\cos A=a^2\iff\cos A=\frac{b^2+c^2-a^2}{2bc}=\frac12\left(\frac bc+\frac cb-\frac{a^2}{bc}\right)\underset{(1)}=\underset{(1)}=\frac12\left(\frac bc+\frac cb-\frac{a}{b+c}\right)\underset{(2)}=\frac12\left(\frac bc+\frac cb-\frac{c-b}b\right)=\frac12\left(\frac bc+1\right)=\frac12\left(\frac1t+1\right)$$
$$\text{Then we use:}\qquad\cos2x=\cos^2x-\sin^2x=\cos^2x-(1-\cos^2x)=2\cos^2x-1$$