Note that
$$
\begin{align}
\sum_{k=n+1}^{2n}\frac1k
&=\sum_{k=1}^{2n}\frac1k\hphantom{\frac1{2k-1}+}-\sum_{k=1}^n\frac1k\\
&=\sum_{k=1}^n\frac1{2k-1}+\frac1{2k}-\frac1k\\
&=\sum_{k=1}^n\frac1{2k-1}-\frac1{2k}\\
&=\sum_{k=1}^{2n}(-1)^{k-1}\frac1k\tag{1}
\end{align}
$$
and by the Alternating Series Test, the series in $(1)$ converges.
Also by the Alternating Series Test, the limit is between any two consecutive partial sums; in particular, the first two are $0$ and $1$ (followed by $\frac12$, $\frac56$, and $\frac7{12}$).
In this answer, that limit is shown, without calculus, to be $\log(2)$.
Evaluating the Limit
We will use the inequality
$$
e^x\ge1+x\tag{2}
$$
Substituting $x\mapsto-x$ in $(2)$ and taking reciprocals yields
$$
e^x\le\frac1{1-x}\tag{3}
$$
Applying $(2)$ gives
$$
\begin{align}
e^{\frac1{n+1}+\frac1{n+2}+\cdots+\frac1{2n}}
&\ge\frac{n+2}{n+1}\frac{n+3}{n+2}\cdots\frac{2n+1}{2n}\\[6pt]
&=\frac{2n+1}{n+1}\\[4 pt]
&=2-\frac1{n+1}\tag{4}
\end{align}
$$
Applying $(3)$ gives
$$
\begin{align}
e^{\frac1{n+1}+\frac1{n+2}+\cdots+\frac1{2n}}
&\le\frac{n+1}n\frac{n+2}{n+1}\cdots\frac{2n}{2n-1}\\[6pt]
&=\frac{2n}n\\[9 pt]
&=2\tag{5}
\end{align}
$$
Therefore,
$$
\log\left(2-\frac1{n+1}\right)\le\frac1{n+1}+\frac1{n+2}+\cdots+\frac1{2n}\le\log(2)\tag{6}
$$
Thus, the limit is $\log(2)$.