1

I am assuming this uses some kind of geometric or taylor series expansion but I am not able to see how to get it :$$\sum_k k (1-e^{-\lambda c})^k e^{-\lambda c}$$

knk
  • 359
  • 4
  • 16

2 Answers2

1

If we denote $u=1-e^{-\lambda c},$ then $$ \sum_k k (1-e^{-\lambda c})^k e^{-\lambda c}=(1-u)u\sum_k {k u^{k-1} }=(1-u)u\left(\sum_k { u^{k} }\right)'. $$

M. Strochyk
  • 8,397
0

HINT:

$$\sum_\sum_{a\le k\le b} k (1-e^{-\lambda c})^k e^{-\lambda c} =e^{-\lambda c}\sum_{a\le k\le b} k (1-e^{-\lambda c})^k $$

Let $$\sum_{a\le r\le b}A x^r=Ax^a\frac{x^{b-a+1}-1}{x-1}=A\frac{x^{b+1}-x^a}{x-1}$$

Differentiate wrt $x$ and multiply both sides by $x$