$\boldsymbol{ba(\mathcal{P}(\mathbb{N}))}$ consisting of all bounded, finitely additive set functions defined on the $\sigma$-algebra $\mathcal{P}(\mathbb{N})$ of all subsets of the natural numbers. Thus, if $\mu: \mathcal{P}(\mathbb{N})\to \mathbb{K}$, then $\mu\in ba(\mathcal{P}(\mathbb{N}))$ if and only if $\mu(\varnothing)=0$;
$$ \mu\left(\bigcup\limits^{n}_{i=1}A_{i}\right)=\sum\limits^{n}_{i=1}\mu(A_{i}), $$
where $A_{1},A_{2},\ldots ,A_{n}$ are pairwise disjoint members of $\mathcal{P}(\mathbb{N})$; and $|\mu|(\mathbb{N})<\infty$, where for $E\in \mathcal{P}(\mathbb{N}):$
$$ |\mu|(E):=\sup\left\{ \sum\limits^{n}_{i=1}|\mu(A_{i})|: \ \bigcup\limits^{n}_{i=1}A_{i}=E \text{ and } A_{i}\cap A_{j}=\varnothing \text{ if } i\neq j \right\}. $$
If $\mu,\lambda\in ba(\mathcal{P}(\mathbb{N}))$ and $\alpha\in\mathbb{K}$ we define: $ (\mu+\lambda)(E):=\mu(E)+\lambda(E) $; $(\alpha\mu)(E):=\alpha\mu(E)$ and $\|\mu\|:=|\mu|(\mathbb{N})$. With this, $(ba(\mathcal{P}(\mathbb{N})), \|\cdot\|)$ is a Banach space.
Prove directly that $ba(\mathcal{P}(\mathbb{N}))$ is not separable.