As an example, one can use the statement that
PROP If $f(0)=f'(0)=0$ and $f''+f=0$, then $f=0$.
P The ODE gives $f'f''+ff'=0$, so that $(f')^2+f^2=K$. But then $K=0$ from the initial conditions. This gives that $f=0$.
COR If $f(0)=a,f'(0)=b$ and $f''+f=0$ then $f=a\cos+b\sin$.
P Set $g=a\cos +b\sin $. Then $h=f-g$. It follows $h''+h=0$ and $h(0)=0,h'(0)=0$ so $h\equiv 0$ by the lemma.
(Giveaway: let $f(x)=\cos (x+y)-\cos x\cos y+\sin x\sin y$ in the first result, or $f(x)=\cos (x+y)$ in the corrollary)
Then you can prove that $\cos(x+y)=\cos x\cos y-\sin x\sin y$ using the above, letting $y$ be a constant.
Alternatively, let $f=\sin x+\cos \left(x+\dfrac \pi 2\right)$ above. You will need to use the special values $\sin \dfrac \pi 2=1$ and $\cos \dfrac\pi 2=0$, though. One can in fact define $\dfrac \pi 2$ to be the unique number determined by $$\inf\{x>0:\cos x=0\}$$