$$\large\int \limits_{0}^{\frac{\pi}{2}} \ln(\sin(x)) \ln( \cos(x))\mathrm dx$$ TL;DR: Is there an elegant way of integrating this? I've reduced it to a series, detailed below, but the closed form eludes me, and the only solution I've seen uses a rabbit-out-of-the-hat approach.
For the series,
$$\begin{align} \int \limits_{0}^{\frac{\pi}{2}} \ln(\sin(x)) \ln( \cos(x))\,\mathrm dx&=-\sum \limits_{k=1}^\infty \frac{1}{k}\int \limits_{0}^{\frac{\pi}{2}} \sin^{2k}(x)\ln(\sin(x))\,\mathrm dx\\ &=-\sum \limits_{k=1}^\infty \frac{1}{k}\int_{0}^{\frac{\pi}{2}} \sin^{2k}(x)\ln(\sin(x))\,\mathrm dx\\ &=-\sum \limits_{k=1}^\infty \frac{1}{k}\int_{0}^{1} u^{2k}\ln(u)\frac{\mathrm du}{1-u^2}\\ &=-\sum \limits_{k=1}^\infty \frac{1}{k} \left(\int_{0}^{1} u^{2k}\ln(u)\,\mathrm du+ \sum \limits_{j=1}^\infty \frac{(2j-1)!!}{(2j)!!} \int_{0}^{1} u^{2(k+j)}\ln(u)\,\mathrm du \right)\\ &=\sum \limits_{k=1}^\infty \frac{1}{k} \left( \frac{1}{(2k+1)^2}+\sum \limits_{j=0}^\infty \frac{(2j-1)!!}{(2j)!!} \frac{1}{(2(k+j)+1)^2} \right)\end{align}$$
, which converges! Both summations are sort-of-justified as $|\sin(x)|, |u|\le1$,with equality only reached at one of the limits of integration, not in between.