I've been looking at the $\epsilon-\delta$ arguments for determining whether a function is continuous at a point. I'm really stuck on how to choose your $\epsilon$. Specifically lets look at the function, $f(x)=\frac{2}{3x}$ being continuous at $x=1$.
Proof: Given $\epsilon$ > 0 there exists $\delta>0$ s.t $ |f(x)-f(1)|< \epsilon$, whenever 0$<|x-1|<\delta$. Well, $|f(x)-f(1)|=|\frac{2}{3x}-\frac{2}{3}|=|\frac{2-2x}{3x}| = |\frac{2(x-1)}{3x}| = \frac{2}{3} |\frac{x-1}{x}|\leq\frac{2}{3}(\frac{1}{|x|}+|1|)$. We need $\frac{1}{|x|}<\delta$. Suppose $\frac{1}{|x|}<1 \Rightarrow 1<|x|$.....