Given the following relation, which properties does it fulfill?
Is my reasoning correct or am I missing something?
$(m, n) ∈ R \iff m > n$
1.) reflexivity
no, $1 > 1$ (trivially false)
2.) symmetry
no, since $x > y\not\rightarrow y > x$, since $2 > 3 \not\rightarrow 3 > 2$
3.) antisymmetry
no, since $(2 > 2)\wedge(2>2) \not\rightarrow 2 = 2 $ (trivially false)
4.) transitivity
yes, since one can prove that $\forall m,n,r\in R:((m> n ) \wedge (n>r)) \rightarrow m > r$
\iff
to get $\iff$. – md2perpe Mar 30 '24 at 20:18