0

Given the following relation, which properties does it fulfill?

Is my reasoning correct or am I missing something?

$(m, n) ∈ R \iff m > n$

1.) reflexivity

no, $1 > 1$ (trivially false)

2.) symmetry

no, since $x > y\not\rightarrow y > x$, since $2 > 3 \not\rightarrow 3 > 2$

3.) antisymmetry

no, since $(2 > 2)\wedge(2>2) \not\rightarrow 2 = 2 $ (trivially false)

4.) transitivity

yes, since one can prove that $\forall m,n,r\in R:((m> n ) \wedge (n>r)) \rightarrow m > r$

md2perpe
  • 26,770

0 Answers0