$$ \int \frac{dx}{\left(x^2+9\right)^2}$$
How would you solve this with partial integration (without trigonometry)?
$$ \int \frac{dx}{\left(x^2+9\right)^2}$$
How would you solve this with partial integration (without trigonometry)?
$$I=\int 1.\frac{1}{x^2+9}dx=x.\frac{1}{x^2+9}-\int x\left(-\frac{1}{(x^2+9)^2}\right)(2x)dx$$$$=\frac{x}{x^2+9}+2\int \frac{x^2}{(x^2+9)^2}dx$$
$$I=\frac{x}{x^2+9}+2\int \frac{x^2+9-9}{(x^2+9)^2}dx=\frac{x}{x^2+9}+2\int \frac{1}{(x^2+9)}dx-18\int \frac{1}{(x^2+9)^2}dx$$$$I=\frac{x}{x^2+9}+2I-18\int \frac{1}{(x^2+9)^2}dx$$
$$18\int \frac{1}{(x^2+9)^2}dx=\frac{x}{x^2+9}+I=\frac{x}{x^2+9}+\frac{1}{3}\tan^{-1}\frac{x}{3}+C$$
$$\int \frac{1}{(x^2+9)^2}dx=\frac{x}{x^2+9}+I=\frac{x}{18(x^2+9)}+\frac{1}{54}\tan^{-1}\frac{x}{3}+C$$