First $\text{f}\left( 1 \right)=1$ beacause $\text{f}\left( a \right)^{\text{f}\left( 1 \right)}=\text{f}\left( a \cdot 1 \right)$, and $\log_{\text{f}\left( a \right)} \text{f}\left( a \right)^{\text{f}\left( 1 \right)} =\text{f}\left( 1 \right) \log_{\text{f}\left( a \right)} \text{f}\left( a \right) =1$
If $\text{f}\left( 2 \right) = c$ then $\text{f}\left( 2 \right)^{\text{f}\left( 2 \right)}=\text{f}\left( 4 \right)$ so $\text{f}\left( 4 \right)=c^c$ so there should be only one group of functions as a solution.
So if $\overbrace{x^{\text{...}^{x}}}^{\text{n times}}=2$ then $\overbrace{{\text{f}\left( x \right)}^{\text{...}^{{\text{f}\left( x \right)}}}}^{\text{n times}}={\text{f}\left( 2 \right)}$ then the $n$th super root of $c={\text{f}\left( x \right)}$, $n=\text{slog}_x2$ so ${\text{f}\left( x \right)}$=the $\text{slog}_x2$ root of c.
I am rather incompetent of my answer so if someone could look it over that would be great.
Super roots and slogs http://en.wikipedia.org/wiki/Tetration#Inverse_relations