The limit in question $$\lim_{n\to \infty} \frac{n}{n!!^\frac{2}{n}}.$$
What I have done: $$ \lim_{n\to \infty}\frac{(n^\frac{2}{n})^\frac{n}{2}}{n!!^\frac{2}{n}}. $$
Then taking the logarithm and converting it into a summation series
$$\lim_{n\to \infty}\frac{2}{n}\sum_{r=0}^{n-1}\ln\frac{1}{1-\frac{2r}{n}}.$$
Substituting $\frac{r}{n} =t$ and converting it into an integral yields
$$-2\int_{0}^1 \ln(1-2t)dt.$$
Integrating gives this function
$$-2[(t+1)\ln(1-2t) -t]_{0}^1.$$
Can someone help me find the limit?