Let $k,n\in\mathbb{N}$. Let $N(k,n)$ denote the size of the finite set $$\{(x_1,\cdots,x_k)\in\mathbb{N}^k:x_1+2x_2+\cdots+kx_k=n\}. $$
I feel it special and important. Do $N(k,n)$ have names? Is there a table of values?
Let $k,n\in\mathbb{N}$. Let $N(k,n)$ denote the size of the finite set $$\{(x_1,\cdots,x_k)\in\mathbb{N}^k:x_1+2x_2+\cdots+kx_k=n\}. $$
I feel it special and important. Do $N(k,n)$ have names? Is there a table of values?