This paper provides a series of upper and lower bounds for the logarithmic function. They are given in the form of Padé approximants and rational approximations (have a look at Table $3$ on page $9$ of the linked paper).
Let use use the second one
$$\frac{3 (x-1) (x+1)}{1+4x+x^2} < \log(x) < \frac{(x-1) (x+5)}{2 (1+2 x)}$$
Take logarithms and Taylor expand
$$\log (3)-\frac{4}{x}+O\left(\frac{1}{x^2}\right)< \log(\log(x)) <\log (x)-2 \log (2)+\frac{7}{2 x}+O\left(\frac{1}{x^2}\right)$$ Divide by $x$, exponentiate using
$$\sqrt[x]{\log(x)}=e^{\frac{\log(\log(x))} x }$$ and continue with Taylor series
$$\color{blue}{1+\frac{\log (3)}{x}+O\left(\frac{1}{x^2}\right)<\sqrt[x]{\log(x)}<1+\frac{\log (x)-2 \log (2)}{x}+O\left(\frac{1}{x^2}\right)}$$
Now, use the squeeze theorem with $x \to \infty$.
Using the seventh set of bounds, we should obtain
$$\color{blue}{1+\frac{\log\left(\frac{49}{10}\right)}{x}+O\left(\frac{1}{x^2}\right)<\sqrt[x]{\log(x)}< 1+\frac{\log (x)-\log
(36)}{x}+O\left(\frac{1}{x^2}\right)}$$