Because of the coefficients $\frac{8}{\pi^2}$ and $\frac{1}{n^2}$ in the series, I got my clue from the Fourier series proof of
$$
\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}.
$$
After putting things together, here is the most direct solution to your question I have found.
We compute the cosine Fourier series of the function
$$
f(x) = 1-x \quad \text{on }[0, 2].
$$
That is, we extend the function evenly to $f(x)=1+x$ on $[-2, 0]$, and then extend the function periodically with period $4$.
Then
$$
1-x = a_0 + \sum_{i=1}^\infty a_n \cos \frac{\pi}2 n x, \quad x\in [0, 2].
$$
We compute the Fourier coefficients by standard formulas.
\begin{align}
a_0 &= \frac{1}{2}\int_0^2 (1-x)\,dx = 0,\\
a_n &= \int_0^2 (1-x)\cos\frac{\pi}2 n x\,dx\\
&= \frac{2}{n\pi}(1-x)\sin\frac{\pi}2 n x \Big|_0^2 + \frac{2}{n\pi}\int_0^2\sin\frac{\pi}2 n x \,dx\\
&=-\frac{4}{n^2\pi^2}\cos\frac{\pi}2 n x\Big|_0^2\\
&=\frac{4}{n^2\pi^2}(1-\cos(n\pi))=\frac{4}{n^2\pi^2}(1-(-1)^n)\\
&=\begin{cases}
0 & n \text{ even},\\
\frac{8}{n^2\pi^2} & n \text{ odd}.
\end{cases}
\end{align}
Therefore,
$$
1-x = \frac{8}{\pi^2}\sum_{n\geq 1,n\text{ odd}} \frac{\cos\frac{\pi}2 n x}{n^2},\quad x\in [0, 2].
$$
Now we adapt this to your case. Without loss of generality, suppose that $x\geq y\in [0, 1]$. Then $\min(x, y)=y$, $x-y, x+y\in [0, 2]$.
By a standard trig identity
$$
\sin A\sin B = \frac{1}{2}\big(\cos(A-B)-\cos(A+B)\big),
$$
we see
\begin{align}
&\quad \frac{8}{\pi^2}\sum_{n\geq 1,n\text{ odd}} \frac{\sin(\frac{\pi}2 n x)\sin(\frac{\pi}2 n y)}{n^2}\\
&=\frac 1 2 \frac{8}{\pi^2}\sum_{n\geq 1,n\text{ odd}} \frac{\cos(\frac{\pi}2 n (x-y))-\cos(\frac{\pi}2 n (x+y))}{n^2}\\
&= \frac 1 2 \big((1-(x-y)) - (1-(x+y))\big)\\
&= y = \min(x, y).
\end{align}
Of course, the formula holds since $x-y, x+y\in [0, 2]$ under the assumption $x\geq y\in [0, 1]$.
If on the other hand $x\leq y\in [0, 1]$, then $x-y\in [-1, 0]$, and the above computation would continue in the last two lines as
\begin{align}
&=\frac{1}{2}(f(x-y) - f(x+y))\\
&=\frac{1}{2}\big(1+(x-y) - (1-(x+y)\big)\\
&=x = \min(x, y),
\end{align}
where we use $f(t)=1+t$ when $t\in [-2, 0]$ for $x-y$.