How to integrate $$\int_{0}^{1} \frac{x \operatorname{Li}_2(1 - x)}{1 + x^2} \, dx$$
My try to integrate $$\text{I}=\int_{0}^{1} \frac{x \operatorname{Li}_2(1 - x)}{1 + x^2} \, dx$$
\begin{aligned} &= -\frac{1}{2} \int_{0}^{1} \frac{\ln(x) \ln(1 + x^2)}{1 - x} \, dx \\ &= -\frac{1}{2} \int_{0}^{1} \frac{\ln(x) \ln(1 + x^2)}{1 - x^2} \, dx \\ &\quad -\frac{1}{2} \int_{0}^{1} \frac{x \ln(x) \ln(1 + x^2)}{1 - x^2} \, dx \end{aligned}
Can someone help me to integrate last two integrals?