Original Question: Solve for all positive integers $n$ such that $25^n + 16^n \equiv 1 \pmod{121}$.
I began by substituting $k=2n$ to obtain $$5^k + 4^k \equiv 1 \pmod{11}$$
Considering this modulo $11$, it can be found that $k \equiv 4 \pmod{5}$. Then, I observed that $5^3 \equiv 4 \pmod{121}$, and so I split the congruence into three cases:
Case-1
$k \equiv 0 \pmod{3}$. Then, $k=3r$. $$(4^k)^3+4^k \equiv 1 \pmod{121}$$ It follows that $4^k \equiv 64 \pmod{121}$.
Case-2
$k \equiv 1 \pmod{3}$. Then, $k=3r+1$. $$4 \cdot (4^r)^3 +5 \cdot (4^r) \equiv 1 \pmod{121}$$ It follows that $4^k \equiv 37 \pmod{121}$.
Case-3
$$k \equiv 2 \pmod{3}.$$ Then,$$ k=3r+2.$$ $$16 \cdot (4^r)^3 +25 \cdot (4^r) \equiv 1 \pmod{121}.$$ It follows that $4^r \equiv 80 \pmod{121}$.
This leaves the congruences:
- $4^k \equiv 64 \pmod{121}$ for $k \equiv 4 \pmod{15}$
- $4^k \equiv 37 \pmod{121}$ for $k \equiv 9 \pmod{15}$
- $4^k \equiv 80 \pmod{121}$ for $k \equiv 14 \pmod{15}$
From here, I am unsure how to proceed.