0

I watched a YouTube video on factoring (namely, 100 trinomial factoring (Dedicated to Mr. Hill) by blackpenredpen) and was curious about the math behind the method he first shows around 12:15. Is there anything wrong with my logic or any ways I can improve my understanding?

We are trying to factor $ax^2+bx+c$, where $a,b,c\in\mathbb{Z}\setminus\{0\}$ such that $\gcd(a,b,c)=1$.
Consider $x^2+bx+ac$, which factors into $(x+q)(x+s)$, where $q+s=b$ and $qs=ac$.
Put $a$ in front of both of the $x$ variables. \begin{align} (ax+q)(ax+s)&=a^2x^2+aqx+asx+qs\\ &=a^2x^2+ax(q+s)+qs\\ &=a^2x^2+abx+ac\\ &=a(ax^2+bx+c) \end{align} Define $t$ where $\gcd(a,q)=t$. $a$ is a factor of $(ax+q)(ax+s)$, so $\gcd(a,s)=\frac{a}{t}$. \begin{align} \frac{(ax+q)(ax+s)}{t\cdot\frac{a}{t}}&=(\frac{ax+q}{t})(\frac{ax+s}{\frac{a}{t}})\\ &=(\frac{ax+q}{t})((ax+s)\frac{t}{a})\\ &=(\frac{ax}{t}+\frac{q}{t})(\frac{atx}{a}+\frac{st}{a})\\ &=(\frac{ax}{t}+\frac{q}{t})(tx+\frac{st}{a})\\ &=\frac{atx^2}{t}+\frac{qtx}{t}+\frac{astx}{at}+\frac{qst}{at}\\ &=ax^2+qx+sx+\frac{qs}{a}\\ &=ax^2+(q+s)x+\frac{qs}{a}\\ &=ax^2+bx+\frac{ac}{a}\\ &=ax^2+bx+c\\ \end{align} $(\frac{ax}{t}+\frac{q}{t})(tx+\frac{st}{a})$ is the completely factored form of the original polynomial.
Step 1: consider your polynomial following the given conditions
$ax^2+bx+c \rightarrow 4x^2+12x-7$
Step 2: consider the polynomial
$x^2+bx+ac \rightarrow x^2+12x-28$
Step 3: this is familiar territory; much easier to deal with, factor as normal
$(x+q)(x+s) \rightarrow (x+14)(x-2)$
Step 4: put $a$'s in front of both $x$'s
$(ax+q)(ax+s) \rightarrow (4x+14)(4x-2)$
Step 5: divide $(a, q)$ and $(a, s)$ by their greatest common divisors within the term
the gcd of (4, 14) is 2 and the gcd of (4, 2) is also 2
$(\frac{4x+14}{2})(\frac{4x-2}{2})=(2x+7)(2x-1)$
Two more examples: \begin{equation} \begin{split} 3x^2-25x-18\\ x^2-25x-54\\ (x-27)(x+2)\\ (3x-27)(3x+2)\\ (x-9)(3x+2) \end{split} \quad\quad\quad\quad \begin{split} 21x^2-20x+4\\ x^2-20x+84\\ (x-14)(x-6)\\ (21x-14)(21x-6)\\ (3x-2)(7x-2) \end{split} \end{equation} We can also show the solutions to $ax^2+bx+c=0$ are the solutions to $x^2+bx+ac=0$ multiplied by $\frac{1}{a}$. \begin{equation} \begin{split} x^2+bx+ac=0\\ (x+q)(x+s)=0\\ x=-q,-s \end{split} \quad\quad\quad\quad \begin{split} ax^2+bx+c=0\\ a(ax^2+bx+c)=0\\ (ax+q)(ax+s)=0\\ x=-\frac{q}{a},-\frac{s}{a} \end{split} \end{equation} $-q(\frac{1}{a})=-\frac{q}{a}, -s(\frac{1}{a})=-\frac{s}{a}$.

  • Basically the idea is Vieta's formulas: the roots of $ax^2+bx+c$ sum to $-b/a$ and multiply to $c/a$. If you multiply these roots by $a$, then they now sum to $-b$ and multiply to $ac$, and then the numbers that do that are the roots of $x^2+bx+ac$. – Ian Mar 14 '24 at 16:01
  • This is sometimes called the AC-method. See here in the linked dupe for a general perspective. – Bill Dubuque Mar 14 '24 at 17:12

0 Answers0