Let $$S=\sum_{0\le i}\sum_{<j\le n} {n \choose i}\tag{*}$$ Consider the summation: $$\sum_{j=0}^{n}\sum_{i=0}^{n} A_i B_j=\sum_{i=0}^n A_i B_i+\sum_{0\le i<j\le n} A_i B_j+ \sum_{n\ge i>j\ge 0} A_i B_j$$ If $B_j=1$, then the second and the third sums in RHS above are equal, then $$\sum_{0\le i<j\le n}A_i=\frac{1}{2}\left[\sum_{j=0}^n\sum_{i=0}^{n} A_i-\sum_{i=0}^n A_i\right]=\frac{1}{2}\left[(n+1)\sum_{i=0}^nA_i-\sum_{i=0}^nA_i\right]$$ Finally, taking $A_i={n \choose i}$ and $\sum_{i=0}^{n} {n \choose i} =2^n$, we get $S=n2^{n-1}$.
The question is: How else this sum (*) can be evaluated?
Edit: It requires good steps to show that $S=\sum_{k=0}^{n} k {n \choose k}$ and hence this question cannot be taken as duplicate. See the positive comments of @jjagmath and @Phicar below.