Fact 1. The function $1/|\xi|^{s}$ locally integrable (in the unit ball) if and only if $s<n$.
Fact 2. If $f\in L^1(\mathbb{R}^n)$, then $\widehat{f}\in\mathcal{C}^{\infty}(\mathbb{R}^n)$ (bounded).
Let $H^{2}:=\left\{u\in L^2(\mathbb{R}^n): \mathcal{F}^{-1}\left((1+|\xi|^2)^2\widehat{f}(\xi)\right)\in L^2(\mathbb{R}^n)\right\}$.
Question 1. For any $f\in L^2$, the equation $-\Delta u=f$ has a unique solution in the Sobolev space $H^{2}$?
My attempt: By fact 1, the function $1/|\xi|^2$ is locally integrable in the unit ball. Then, $1/|\xi|^2\in L^1(\mathbb{R}^n)$ when $2<n$. or not?. The candidate solution is $u_f=\mathcal{F}^{-1}\left( \frac{1}{|\xi|^2}\widehat{f}\right)$. By convolution theorem, $u_f=\mathcal{F}^{-1}\left(\frac{1}{|\xi|^2}\right)*f$. By fact 1, $\mathcal{F}^{-1}\left(\frac{1}{|\xi|^2}\right)$ is bounded, then $u_f\in L^2$. Moreover, \begin{align} \mathcal{F}^{-1}\left((1+|\xi|^2)\widehat{u_f}(\xi)\right)&=\mathcal{F}^{-1}\left( \frac{(1+|\xi|^2)}{|\xi|^2}\widehat{f}(\xi)\right)\\ &=\mathcal{F}^{-1}\left(\frac{1}{|\xi|^2}\widehat{f}\right)+\mathcal{F}^{-1}\widehat{f} \\ &=\mathcal{F}^{-1}\left(\frac{1}{|\xi|^2}\widehat{f}\right)+f\\ &=u_f+f \end{align} and $u_f+f\in L^2(\mathbb{R}^n)$ because $u_f, f\in L^2(\mathbb{R}^n)$
This is right? Thanks you!
An idea to show this: assume by contraction the inverse laplace operator is bounded from $\mathrm{L}^2$ to $H^2$. In particular, it maps $\mathrm{L}^2$ into itself. But by a dilation argument, you can make the norm of the solution as small as possible and therefore the $\mathrm{L}^2$ of your solution must be $0$...
I did a post about solving the poisson equation here : https://math.stackexchange.com/questions/4738465/properties-of-the-inverse-laplacian-operator/4740654#4740654
– ToGle Mar 13 '24 at 00:59