3

Let $r = \sqrt{x^2 + y^2 + z^2}$. From the fact that $\nabla^2 r^{-1} = -4\pi \delta^{(3)}(\vec{r})$, is it correct to say that $$ \frac{\partial^2}{\partial x^2}(r^{-1}) = \frac{3x^2 - r^2}{r^5} - \frac{4\pi}{3} \delta^{(3)}(\vec{r}) \\ \frac{\partial^2}{\partial x \partial y}(r^{-1}) = \frac{3xy}{r^5} $$

The question is, is it justified to split the Dirac delta evenly in all three directions? This seems like the most straightforward way. $$ \delta = \frac{\delta}{3} + \frac{\delta}{3} + \frac{\delta}{3} $$

Or maybe there are other ways to distribute, while still respecting symmetry, like $$ \delta = \frac{x^2 \delta}{r^2} + \frac{y^2 \delta}{r^2} + \frac{z^2 \delta}{r^2} $$

Bio
  • 835
  • 6
  • 13
  • With

    $$\frac{\partial^2}{ \partial x^2} }\frac{1}{\sqrt{x^2+y^2+z^2}}} =\frac{3 x^2}{r^5}-\frac{1}{r^3}$$

    there will be something wrong.

    – Roland F Mar 11 '24 at 16:01
  • 1
  • 1
    Informally speaking, a Dirac delta in $\mathbb{R}^3$ is the product of Dirac deltas in the three directions, not a sum of them. – David Gao Mar 11 '24 at 19:19
  • 1
    @DavidGao That is not an issue with the question. The question really is "What are the second partial derivatives with respect to the Cartesian coordinates of the static potential. – Mark Viola Mar 12 '24 at 20:43
  • @MarkViola My comment was not intended as a full answer. Since the OP seems to think it is possible to “split the Dirac delta evenly in all three directions” and seems to be trying to build an answer using that, I was merely pointing out that that is not true, at least in the sense I wrote down. – David Gao Mar 12 '24 at 20:48
  • 1
    @DavidGao That is not what the OP is suggestkng. – Mark Viola Mar 12 '24 at 23:32

2 Answers2

2

Let $\psi$ be the distribution $\psi(r)=\frac1r$. Then, for $\phi \in C_C^\infty$, we have

$$\begin{align} \langle \partial_{ij}\psi, \phi\rangle &=\langle \psi, \partial_{ij}\phi\rangle\\\\ &=\int_{\mathbb{R}^3}\frac1r \frac{\partial^2\phi(\vec r)}{\partial x_i\partial x_j}\,d^3\vec r\\\\ &=\underbrace{\int_{\mathbb{R}^3}\frac{\partial}{\partial x_i}\left(\frac1r \frac{\partial\phi(\vec r)}{\partial x_j}\right)\,d^3\vec r}_{=0\,\,\text{since}\,\,\phi\in C_C^\infty}-\int_{\mathbb{R}^3}\frac{\partial}{\partial x_i}\left(\frac1r \right)\left(\frac{\partial\phi(\vec r)}{\partial x_j}\right)\,d^3\vec r\\\\ &=-\lim_{\varepsilon\to 0^+}\int_{\mathbb{R}^3\setminus B(0,\varepsilon)}\frac{\partial}{\partial x_i}\left(\frac1r \right)\left(\frac{\partial\phi(\vec r)}{\partial x_j}\right)\,d^3 \vec r\tag1 \end{align}$$

where $B(\vec r_c,R)$ is a sphere of radius $R$ centered at $\vec r_C$. Now, integrating by parts again, we find that

$$\begin{align} \langle \partial_{ij}\psi, \phi\rangle&=-\lim_{\varepsilon\to 0^+}\int_{\mathbb{R}^3\setminus B(0,\varepsilon)}\frac{\partial }{\partial x_j}\left(\phi(\vec r)\frac{\partial}{\partial x_i}\left(\frac1r \right)\right)\,d^3\vec r\\\\ &+\lim_{\varepsilon\to 0^+}\int_{\mathbb{R}^3\setminus B(0,\varepsilon)}\phi(\vec r)\frac{\partial^2 }{\partial x_i\partial x_j}\left(\frac1r\right)\,d^3\vec r\\\\ &=\lim_{\varepsilon\to0^+}\oint_{\partial B(0,\varepsilon)}(\hat n\cdot \hat x_j)\phi(\vec r)\frac{\partial }{\partial x_i}\left(\frac1r\right)\,dS\\\\ &+\lim_{\varepsilon\to 0^+}\int_{\mathbb{R}^3\setminus B(0,\varepsilon)}\phi(\vec r)\frac{\partial^2 }{\partial x_i\partial x_j}\left(\frac1r\right)\,d^3\vec r\\\\ &=-\lim_{\varepsilon\to0^+}\int_0^{2\pi}\int_0^\phi (\hat r\cdot \hat x_j)\phi(\vec r)\left.\left(\frac{x_i}{r^3}\right)\right|_{r=\varepsilon}\,\varepsilon^2\,\sin(\theta)\,d\theta\,d\phi\\\\ &+\lim_{\varepsilon\to 0^+}\int_{\mathbb{R}^3\setminus B(0,\varepsilon)}\phi(\vec r)\frac{\partial^2 }{\partial x_i\partial x_j}\left(\frac1r\right)\,d^3\vec r\\\\ &=-\frac{4\pi}{3}\delta_{ij}\phi(0)+\lim_{\varepsilon\to 0^+}\int_{\mathbb{R}^3\setminus B(0,\varepsilon)}\phi(\vec r)\frac{\partial^2 }{\partial x_i\partial x_j}\left(\frac1r\right)\,d^3\vec r\\\\ \end{align}$$

Therefore, in distribution we see that

$$\frac{\partial^2}{\partial x_i\partial x_j}\left(\frac1r\right)=-\frac{4\pi}{3}\delta_{ij}\delta(\vec r)+\text{PV}\left(\frac{3x_ix_j-\delta_{ij}r^2}{r^5}\right)$$

When $i=j$, we see that in distribution

$$\frac{\partial^2}{\partial x_i^2}\left(\frac1r\right)=-\frac{4\pi}{3}\delta(\vec r)+\text{PV}\left(\frac{3x_i^2-r^2}{r^5}\right)$$

whereupon summing over $i$ yields the familar result

$$\nabla^2 \frac1r =-4\pi \delta(\vec r)$$

Mark Viola
  • 179,405
0

You're completely correct that $\delta$-at-$0$ in 3D is some sort of "product" of the one-dimensional $\delta$'s in any choice of (maybe best to be orthogonal...?) coordinates.

But, although this is probably unsatisfying, the "decomposition" of it is as a tensor product $\delta_x\otimes \delta_y\otimes \delta_z$, in the (standard) coordinate variables. Thus, by a sort of product rule, applying $\Delta$, expressed as sum of second derivatives in the chosen variables, $$ \Delta(\delta) \;=\; (\partial_x^2+\partial_y^2+\partial_z^2)(\delta_x\otimes\delta_y\otimes\delta_z) $$ $$ \;=\; \delta_x''\otimes \delta_y\otimes \delta_z + \delta_x\otimes \delta_y''\otimes \delta_z + \delta_x \otimes\delta_y\otimes\delta_z'' $$ This is literally correct, but there are (perhaps unsurprisingly) some subtleties in interpreting/using it. :)

paul garrett
  • 52,465