We are going to find the definite integral $${I=\int\limits_{0}^{1}\frac{\ln x\sin^{-1}x\cos^{-1}x}{x}dx}$$
Ah, this integral. The more I looked into it the more it looked like it might have a closed form. Arriving at it just feels so satisfying!
Firstly, by the substitution
$x=\sin \theta$, we obtain
$$\begin{align*}I&=\int\limits_{0}^{\frac{\pi}{2}}\theta\left(\frac{\pi}{2}-\theta\right)\ln(\sin\theta)\,\cot\theta d\theta\\&=\frac{\pi}{2}J_{1}-J_{2}\end{align*}$$
where $\displaystyle{J_{n}=\int\limits_{0}^{\frac{\pi}{2}}\theta^{n}\ln(\sin\theta)\cot\theta d\theta}$
For $J_{1}$, let’s first integrate by parts to get
$$\begin{align*}J_{1}&=\int\limits_{0}^{\frac{\pi}{2}}\theta\ln\sin\theta\,\,d\left(\ln\sin\theta\right)\\&=-\int\limits_{0}^{\frac{\pi}{2}}\theta\cot\theta\ln\sin\theta d\theta-\int\limits_{0}^{\frac{\pi}{2}}\ln^{2}\sin\theta d\theta\\&=-\frac{1}{2}\int\limits_{0}^{\frac{\pi}{2}}\ln^{2}\sin\theta d\theta\end{align*}$$
Now
$\displaystyle{J_{1}=-\frac{1}{2}\int\limits_{0}^{\infty}\frac{\partial^{2}}{\partial a^{2}}\frac{\theta^{a}}{\sqrt{1-\theta^{2}}}d\theta\quad}$when $a=0$,
so since $\int\limits_{0}^{\infty}\frac{\theta^{a}}{\sqrt{1-\theta^{2}}}d\theta=\frac{\Gamma\left(\frac{a+1}{2}\right)}{\Gamma\left(\frac{a}{2}+1\right)}$,
by some tedious calculations, we can obtain
$$\displaystyle{J_{1}=-\frac{\pi^{3}}{48}-\frac{\pi}{4}\ln^{2}2}$$
Repeating the same integration-by-parts trick for
$J_{2}$ quickly yields
$$\begin{align*}J_{2}&=\int\limits_{0}^{\frac{\pi}{2}}\theta^{2}\ln\sin\theta\,\,d\left(\ln\sin\theta\right)\\&=-J_{2}-2\int\limits_{0}^{\frac{\pi}{2}}\theta\ln^{2}\sin\theta d\theta\\&=-\int\limits_{0}^{\frac{\pi}{2}}\theta\ln^{2}\sin\theta d\theta\end{align*}$$
This last integral looks like a beast, but we can first simplify it a bit using the Fourier series
$\displaystyle{\ln^{2}\left(2\sin\theta\right)=\left(\frac{\pi}{2}-\theta\right)^{2}+2\sum\limits_{k=1}^{\infty}\frac{H_{k-1}}{k}\cos 2k\theta}$, valid for
$0<\theta<\pi$.
Integrating that gets us
$$\begin{align*}\int\limits_{0}^{\frac{\pi}{2}}\theta\ln^{2}\left(2\sin\theta\right)d\theta&=\frac{\pi^{4}}{192}+2\sum\limits_{k=1}^{\infty}\frac{H_{k-1}}{k}\int\limits_{0}^{\frac{\pi}{2}}\theta\cos 2k\theta d\theta\\&=\frac{\pi^{4}}{192}+\frac{1}{2}\sum\limits_{k=1}^{\infty}\frac{H_{k-1}}{k^{3}}\left((-1)^{k}-1\right)\\&=\frac{\pi^{4}}{192}+\frac{1}{2}\sum\limits_{k=1}^{\infty}\frac{(-1)^{k}H_{k-1}}{k^{3}}-\frac{1}{2}\sum\limits_{k=1}^{\infty}\frac{H_{k-1}}{k^{3}}\\&=\frac{\pi^{4}}{192}+\frac{1}{2}\sum\limits_{k=1}^{\infty}\frac{(-1)^{k}H_{k}}{k^{3}}-\frac{1}{2}\sum\limits_{k=1}^{\infty}\frac{(-1)^{k}}{k^{4}}-\frac{1}{2}\sum\limits_{k=1}^{\infty}\frac{H_{k-1}}{k^{3}}+\frac{1}{2}\sum\limits_{k=1}^{\infty}\frac{1}{k^{4}}\\&=\frac{\pi^{4}}{192}+\frac{1}{2}\sum\limits_{k=1}^{\infty}\frac{(-1)^{k}H_{k}}{k^{3}}+\frac{1}{2}\eta(4)-\frac{1}{2}\sum\limits_{k=1}^{\infty}\frac{H_{k-1}}{k^{3}}+\frac{1}{2}\zeta(4)\end{align*}$$
where $\eta$ and $\zeta$ represent the Dirichlet Eta function and the Riemann Zeta function respectively.
$$\sum\limits_{k=1}^{\infty}\frac{H_{k}}{k^{3}}=\frac{\pi^{4}}{72}$$ is a well-known result that we can find as the equation
$(53)$ on the Wolfram MathWorld page for harmonic numbers (No idea why this link wouldn't turn in a hyperlink, so I removed it), and
$$\sum\limits_{k=1}^{\infty}\frac{(-1)^{k}H_{k}}{k^{3}}=-\frac{11}{4}\zeta(4)+2\lambda(3)\ln2-\frac{1}{2}\ln^{2}2\zeta(2)+\frac{1}{12}\ln^{4}2+2\text{Li}_{4}\left(\frac{1}{2}\right)$$ is an equally fascinating result that we can obtain via modifying equation
$[4.85]$ in Cornel Ioan Vălean’s infamous book (Almost) Impossible Integrals, Sums, and Series.
Note that $\lambda$ here denotes the Dirichlet Lambda function (ugly, I know, but you’ll see in a second that it cancels out very nicely).
With these handy results, we have
$$\begin{align*}&\,\int\limits_{0}^{\frac{\pi}{2}}\theta\ln^{2}\left(2\sin\theta\right)d\theta\\&=\frac{\pi^{4}}{192}+\frac{1}{2}\left(-\frac{11}{4}\zeta(4)+2\lambda(3)\ln2-\frac{1}{2}\ln^{2}2\zeta(2)+\frac{1}{12}\ln^{4}2+2\text{Li}_{4}\left(\frac{1}{2}\right)+\eta(4)-\frac{\pi^{4}}{72}+\zeta(4)\right)\\&=-\frac{19}{2880}\pi^{4}+\frac{1}{24}\ln^{4}2-\frac{\pi^{2}}{24}\ln^{2}2+\lambda(3)\ln2+\text{Li}_{4}\left(\frac{1}{2}\right)\end{align*}$$
But on the other hand, $\displaystyle{\ln^{2}\left(2\sin\theta\right)}$ is readily expandable into $\displaystyle{\ln^{2}2+2\ln2\ln\sin\theta+\ln^{2}\sin\theta}$
This means that what we’re dealing with can indeed be rewritten as
$$\begin{align*}\int\limits_{0}^{\frac{\pi}{2}}\theta\ln^{2}\left(2\sin\theta\right)d\theta&=\ln^{2}2\int\limits_{0}^{\frac{\pi}{2}}\theta d\theta+2\ln2 \int\limits_{0}^{\frac{\pi}{2}}\theta\ln\sin\theta d\theta+\int\limits_{0}^{\frac{\pi}{2}}\theta\ln^{2}\sin\theta d\theta\\&=\frac{\pi^{2}}{8}\ln^{2}2+2\ln2\underbrace{\int\limits_{0}^{\frac{\pi}{2}}\theta\ln\sin\theta d\theta}_{K_{1}}-J_{2}\end{align*}$$
The bracketed term is easy to evaluate. Using the so-called King Property of definite integrals, we have
$$\displaystyle{K_{1}=\int\limits_{0}^{\frac{\pi}{2}}\theta\ln\sin\theta d\theta=\int\limits_{0}^{\frac{\pi}{2}}\left(\frac{\pi}{2}-\theta\right)\ln\cos\theta d\theta}$$
Adding, we get
$$\begin{align*}2K_{1}&=\int\limits_{0}^{\frac{\pi}{2}}\theta\ln\tan\theta d\theta+\frac{\pi}{2}\int\limits_{0}^{\frac{\pi}{2}}\ln\cos\theta d\theta\\2K_{1}&=-2\sum\limits_{k=1}^{\infty}\frac{1}{2k-1}\int\limits_{0}^{\frac{\pi}{2}}\theta\cos\left(4k\theta-2\theta\right)d\theta-\frac{\pi}{2}\left(\frac{\pi}{2}\ln 2\right)\\ 2K_{1}&=\sum\limits_{k=1}^{\infty}\frac{1}{\left(2k-1\right)^{3}}-\frac{\pi^{2}}{4}\ln 2\\2\ln 2K_{1}&=\lambda(3)\ln2-\frac{\pi^{2}}{4}\ln^{2}2\end{align*}$$
And therefore,
$$\displaystyle{-\frac{19}{2880}\pi^{4}+\frac{1}{24}\ln^{4}2-\frac{\pi^{2}}{24}\ln^{2}2+\lambda(3)\ln2+\text{Li}_{4}\left(\frac{1}{2}\right)=\frac{\pi^{2}}{8}\ln^{2}2+2\ln2+\lambda(3)\ln2-\frac{\pi^{2}}{4}\ln^{2}2-J_{2}}$$
which is equivalent to saying
$$J_{2}=\frac{19}{2880}\pi^{4}-\frac{\pi^{2}}{12}\ln^{2}2-\frac{1}{24}\ln^{4}2+\text{Li}_{4}\left(\frac{1}{2}\right)$$
(See? The lambda’s gone!)
Finally, we can evaluate the original integral as desired.
$$\begin{align*}I&=\frac{\pi}{2}J_{1}-J_{2}\\&\boxed{=\frac{1}{24}\ln^{4}2-\frac{\pi^{2}}{24}\ln^{2}2-\frac{49}{2880}\pi^{4}+\text{Li}_{4}\left(\frac{1}{2}\right)_{\blacksquare}}\end{align*}$$
Luna luceat tibi magis.
ー 如月あやみ (Kisaragi Ayami)